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In many a situations, naturally occurring experiments are either too expensive or it isn’t

possible for us to experiment with them. For e.g., consider what if we want to see what

affects weather of a particular region. In most cases, it isn’t possible for us to “experiment”

with the weather. Similarly, say we want to study a volcano. We know several parameters

that affect the current temperature of a volcano but we can’t alter most of them. For such

purpose, we need an emulator that can perform just like that volcano or region where we

can alter the variables and simulate conditions. Gaussian model is a popular choice for such

emulators. These emulators often need to interpolate the simulator and this condition can

sufficiently be covered by Gaussian models. Gaussian models make a good emulator and

thus are popularly used by various applied statisticians.

1 Forms of Gaussian Models

1.1 Deterministic Model: y(x) = µ+ Z(x)

Model Statement Consider the following: xi is d dimensional ith input vector, xi =

(xi1, . . . , xid)
′. yi = y(xi) is the univariate response variable. The experiment design is

D0 = {x1, . . . ,xn} as set of n input vectors. Output of the simulation trials are stored in n

dimensional vector as Y = y(D0) = (y1, y2, . . . , yn)′.

This model is also known as Gaussian process model with fixed mean. The µ is the overall

grand mean. Z(x) is n dimensional Gaussian process with E(X(xi)) = 0, V ar(Z(xi)) = σ2
z

and cov(Z(xi, xj)) = σ2Rij, where R is correlation matrix of all xi. In most cases, we assume

that y(D0) has a multivariate normal distribution, Nn(1nµ,Σ), where Σ = V ar(D0|y(D0)) =

σ2
z and 1n is a n × 1 vector of all 1’s (Sacks et al., 1989). Define a new vector r, of

correlation between various sampled design points, xi and the unsampled design point, x∗i ,

i.e. r(x∗) = [corr(x1, x
∗), corr(x2, x

∗), . . . , corr(xn, x
∗)]′.
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Likelihood The negative profile log-likelihood in this GP model is proportional to,

−2 logLp ∝ log(|R|) + n log[(Y − 1nµ̂(θ))′R−1(Y − 1nµ̂(θ))].

Parameter Estimates The closed form estimates of the parameters, µ and σ2 are as

follows,

µ̂(θ) = (1′nR
−11n)−1(1′nR

−1Y ),

σ̂2(θ) =
(Y − 1nµ̂(θ))′R−1(Y − 1nµ̂(θ)

n
.

Predictors The predictor y(x) and the responses Y together follow multivariate normal

distribution, i.e.  y(x)

Y

 = Nn

 µ

µ1n

 ,
 σ2 σ2r′(x)

σ2r(x) σ2R

 .
So, E(y(x)|Y ) = µ + r′R−1(Y − 1nµ) and V ar(y(x)|Y ) = σ2(1 − r′(x)R−1r(x)). The

predicted value at any unsampled point x∗, the predictor is,

ŷ(x∗) = µ̂+ r′R−1(Y − 1nµ̂),

where µ̂ is the estimated mean.

Mean Squared Error ŷ(x∗) has a mean squared error of σ2(1− r′(x)R−1r(x)).

1.2 Universal Kriging Model: y(x) = Fβ + Z(x)

Model Statement Consider the following: xi is d dimensional ith input vector; xi =

(xi1, . . . , xid)
′. yi = y(xi) is the univariate response variable. The input data matrix is

X = {x1, . . . ,xn} as set of n input vectors. Output of the simulation trials are stored in n

dimensional vector as Y = y(X) = (y1, y2, . . . , yn)′.

The vector β is the Generalised Least Square estimate of true β. Z(x) is n dimensional

Gaussian process with E(Z(xi)) = 0, V ar(Z(xi)) = σ2 and cov(Z(xi, xj)) = σ2Rij, where R

is correlation matrix of all xi.

Define

F =


f(x1)

...

f(xn)

 .
Also define a new vector r, of correlation between various sampled design points, xi and the

unsampled design point, x∗i , i.e. r(x∗) = [corr(x1, x
∗), corr(x2, x

∗), . . . , corr(xn, x
∗)]′.
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Likelihood The negative profile log-likelihood in this GP model is proportional to,

−2 logLp ∝ log(|R|) + n log[(Y − Fβ̂)′R−1(Y − Fβ̂)].

Parameter Estimates The parameters and their values are given by,

β̂ = (F ′R−1F )−1F ′R−1Y, and

σ̂2 =
(Y − Fβ̂)′R−1(Y − Fβ̂)

n
.

Predictor The predictor y(x) and the responses Y together follow multivariate normal

distribution, i.e.  y(x)

Y

 = Nn

 f(x)β

Fβ

 ,
 σ2 σ2r′(x)

σ2r(x) σ2R

 .
So, E(y(x)|Y ) = µ + r′R−1(Y − Fβ) and V ar(y(x)|Y ) = σ2(1 − r′(x)R−1r(x)). The

predicted value at any unsampled point x∗, the BLUP is,

ŷ(x∗) = f(x∗)β̂ + r′R−1(Y − Fβ̂),

where β̂ = (F ′R−1F )−1F ′R−1Y , i.e. usual generalised least square estimate. The first part

in BLUP can be interpreted as least square prediction and the second part is the Gaussian

process. So, an statistician can first get a regression model and then interpolate the residuals

as if there were no regression model, and that would lead to this model.

1.3 Model: Y (x) = µ+ Z(x) + ε

In this model, consider the following: xi is d dimensional ith input vector, xi = (xi1, . . . , xid)
′.

yi = y(xi) is the univariate response variable. The experiment design is D0 = {x1, . . . ,xn}
as set of n input vectors. Output of the simulation trials are stored in n dimensional vector

as Y = y(D0) = (y1, y2, . . . , yn)′.

The µ is the overall grand mean. Z(x) is n dimensional Gaussian process with E(Z(xi)) =

0, V ar(Z(xi)) = σ2
z and cov(Z(xi, xj)) = σ2

zRij, where R is correlation matrix of all xi. ε is

the measurement error in the model as the Gaussian process might not be apt for all kinds

of departures from the grand mean. Also, ε follows multivariate normal distribution with

E(ε) = 0 and V ar(ε) = σ2
εI where I is the identity matrix of size n×n and thus the errors are
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independent of each other. We assume that y(D0) has a multivariate normal distribution,

Nn(1nµ,Σ), where Σ = V ar(D0|y(D0)) = σ2
zR + σ2

εI and 1n is a n × 1 vector of all 1’s.

Also define a new vector r, of correlation between various sampled design points, xi and the

unsampled design point, x∗i , i.e. r(x∗) = [corr(x1, x
∗), corr(x1, x

∗), . . . , corr(xn, x
∗)]′.

Likelihood Since new variance is Σ = σ2
εI + σ2

zR, so define Σ = σ2
z

(
R + σ2

ε

σ2
z
I
)

= σ2
zR1.

The negative profile log-likelihood in this GP model is proportional to,

−2 logLp ∝ log(|R1|) + n log[(Y − 1nµ̂(θ))′R−11 (Y − 1nµ̂(θ))].

Parameter Estimates The closed form estimates of the parameters, µ and σ2
z are as

follows,

µ̂(θ) = (1′nR
−11n)−1(1′nR

−1Y ), and

σ̂z
2(θ) =

(Y − 1nµ̂(θ))′R−11 (Y − 1nµ̂(θ))

n
.

Predictors Following the Best Linear Unbiased Predictor approach at any unsampled

point x∗, the predictor is,

ŷ(x∗) = µ̂+ r′R−11 (Y − 1nµ̂).

The predictor y(x) and the responses Y together follow multivariate normal distribution,

i.e.  y(x)

Y

 = Nn

 µ

µ1n

 ,
 σ2

z + σ2
ε σ2

zr
′(x)

σ2
zr(x) σ2

zR1

 .
So, E(y(x)|Y ) = µ+ r′R−11 (Y − 1nµ) and V ar(y(x)|Y ) = σ2

z + σ2
ε − σ2

zr
′(x)R−11 r(x)).

1.4 Model: Y = Fβ + Z(x) + ε

Model Statement Consider the following: xi is d dimensional ith input vector; xi =

(xi1, . . . , xid)
′. yi = y(xi) is the univariate response variable. The input data matrix is

X = {x1, . . . ,xn} as set of n input vectors. Output of the simulation trials are stored in n

dimensional vector as Y = y(X) = (y1, y2, . . . , yn)′.

The vector β is the Ordinary Least Square/Generalised Least Square estimate of true

β. Z(x) is n dimensional Gaussian process with E(Z(xi)) = 0, V ar(Z(xi)) = σ2
z and

Cov(Z(xi, xj)) = σ2
zRij, where R is correlation matrix of all xi.
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ε gives a model with an additional measurement error. ε is has multivariate normal

distribution with E(ε) = 0 and covariance matrix, V ar(ε) = σ2
εI, where I is identity matrix.

The covariance after including ε in the model is,

V ar(Y (x)) = σ2
εI + σ2

zR.

Likelihood Since new variance is σ2
εI + σ2

zR, so define Σ = σ2
zR1 = σ2

z

(
R + σ2

ε

σ2
z
I
)
. The

negative profile log-likelihood in this GP model is proportional to,

−2 logLp ∝ log(|R1|) + n log[(Y −Xβ̂)′R−11 (Y −Xβ̂)].

Parameter Estimates The only parameter in this model is β. It is estimated using least

square techniques. Its value is given by,

β̂ = (F ′R−1F )−1F ′R−1Y, and

σ̂2 =
(Y − Fβ̂)′R−11 (Y − Fβ̂)

n
.

Predictor Define

F =


x1
...

xn

 .
Also define a new vector r, of correlation between various sampled design points, xi and the

unsampled design point, x∗i , i.e.

r(x∗) = [corr(x1, x
∗), corr(x1, x

∗), . . . , corr(xn, x
∗)]′.

The predictor y(x) and the responses Y together follow multivariate normal distribution,

i.e.  y(x)

Y

 = Nn

 f(x)β

Fβ

 ,
 σ2

z + σ2
ε σ2

zr
′(x)

σ2
zr(x) σ2

zR1

 .
So, E(y(x)|Y ) = f(x)β+r′R−11 (Y −Fβ) and V ar(y(x)|Y ) = σ2

z +σ2
ε −σ2

zr
′(x)R−11 r(x)).

When ε = 0, there is no error in prediction, i.e. MSE(xi) = 0 and the model is perfect

interpolator at the design points, i.e. Y (xi) = y(xi).

The BLUP can be written as

ŷ(x∗) = f(x∗)β̂ + r′(x∗)R−11 (Y − Fβ̂),
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where β̂ = (F ′R−11 F )−1F ′R−11 Y , i.e. usual generalised least square estimate. The first part

in BLUP can be interpreted as least square prediction and the second part is the Gaussian

process. So, an statistician can first get a regression model and then interpolate the residuals

as if there were no regression model, and that would lead to this model.

2 Correlation Structures

2.1 Power exponential correlation

Structure of this correlation family is,

Rij = corr(z(xi), z(xj)) =
d∏

k=1

exp{−θk|xij − xjk|pk},

where θ is vector of hyper parameters. These are estimated while estimating other pa-

rameters of the model. The variable pk is known as smoothness parameter and its value

lies between (0, 2]. This model is most common in practice. When pk < 2 the correlation

structure is not differentiable at zero and the process is not mean square continuous. When

pk = 2, the process is infinitely continuous and differentiable (Kaufman et al., 2011).

Also, taking pk = 1 would make the correlation structure which have first order derivative

from one side. They are called Ornstein–Uhlenbeck process. For details see Sacks and

Ylvisaker (1966) and Sacks et al. (1989). Integrating this process would give a process that

is smoother than this but less smoother than when pk = 2. This can be useful in situations

where some differentiability is present and analyticity is in response variable (Sacks et al.,

1989).

2.2 Gaussian correlation

Structure of this correlation is,

Rij = corr(z(xi), z(xj)) =
d∏

k=1

exp{−θk(xij − xjk)2},

where θ is vector of hyper parameters. Gaussian correlation is a specific form of power

exponential correlation when pk = 2. Linkletter et al. (2006) say that for most purposes,

pk = 2 and the if the responses suggest for pk < 2 in the power exponential correlation,

it would be due to numerical “jitters” and not due to model. ε usually takes care of such

“jitters” and it isn’t advised to use pk < 2 for that. Gaussian correlation is especially popular
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because of its smoothness effect which is enabled by pk = 2. Also, this makes the realisations

of its functions infinitely differentiable, another desired effect when working on interpolation.

Being differentiable the function gives us the ability to calculate rate of change, growth, etc.

2.3 Matern correlation

This correlation function was given by Santner et al. (2003). The correlation is defined as,

Rij =
d∏

k=1

1

Γ(ν)2ν−1
(2
√
ν|xij − xjk|θk)νκν(2

√
ν|xij − xjk|θk),

where κν is modified Bessel function of order ν. This correlation was originally obtained by

letting the parameter in the Gaussian correlation follow Gamma distribution which yielded

a positive and spherically symmetric density proportional to Rij and then finding that its

Fourier transform was also a density (Guttorp and Gneiting, 2006).

2.4 Compactly supported correlation

Kaufman et al. (2011) use Gaussian process model but with a different model for correlation

with compact support. They provide an algorithm which effectively brings in more zeros

in the correlation matrix and then it is then efficiently manipulated using sparse matrix

algorithms.

Compact support, mathematically, means that for some τk > 0, Rk(|xk − x′k|; τk) = 0

when |xk − x′k| ≥ τk. This has the effect of introducing zeros in the correlation matrix and

thus makes it easy for computationally efficient sparse matrix techniques. They use compact

support in product form of correlation matrix,

R(x,x′; θ) =
d∏

k=1

Rk(|xk − x′k|; θk).

For the power exponential correlation function, they list two methods.

1. Bohman: R(t; τ) = (1− t/τ) cos (πt/τ) + sin(πt/τ)/π

2. Truncated power: R(t; τ, α, ν) = [1 − (t/τ)α]ν , with 0 < α < 2, ν ≥ νd(α). The term

νd(α) represents a restriction so that the function is a valid correlation function, with

limα→ 2νd(α) =∞. (Golubov, 1981)

There can be some parallel drawn between Truncated power’s α and power correlation’s α.

The truncated power function is not differentiable even once at the origin and corresponds
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to a process which is not even mean square continuous, if α < 2. When α = 2, the

function is infinitely differentiable but this is an unrealistic scenario with such high level

of “smoothness”. Bohman function, however, is twice differentiable and is mean square

differentiable.

The range, τ plays an important role in this approach. First, they control the degree of

correlation in each dimension (like power correlation’s parameter, θ). Second, unlike θ, τk

also controls the degree of sparsity in the matrix. For computational purposes and saving

time, some additional restriction is needed which they apply through prior distributions.

3 Correlation Parametrisations

3.1 Original Parametrisation θk = θk

This is the original parametrisation in Gaussian Process model. This happens to be most

popular approach with applied statisticians. The value of θk can be between (0,∞). This

parametrisation can lead to wobbly correlation values especially when θ is close to zero.

(MacDonald et al., 2015)

Formulation The correlation matrix with this parametrisation is defined as,

Rij = corr(z(xi), z(xj)) =
d∏

k=1

exp{−θk|xij − xjk|pk}.

3.2 Parametrisation θk = 10βk

We can also use another parameterisation, θk = 10βk , i.e. βk = log10(θk) for all k = 1, 2, . . . , d.

This benefits in easier likelihood optimisation as MacDonald et al. (2015) suggest. When

θk is close to zero, the likelihood functions fluctuates rapidly. Taking 10βk parametrisation

addresses this issue. For βk � 0, there is very high spatial correlation. For βk � 0, there is

very low spatial correlation. The domain of this parameter, βk is (−∞,∞).

Formulation The correlation matrix with this parametrisation is defined as,

Rij = corr(z(xi), z(xj)) =
d∏

k=1

exp{−10βk |xij − xjk|pk}.
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3.3 Parametrisation θk = −2αk log(ρk)

Linkletter et al. (2006) use parametrisation θk = −2αk log(ρk). The correlation function they

used was,

corr(z(xi), z(xj)) =
d∏

k=1

ρ
2αk |xij−xjk|αk
k .

Since θ > 0, hence ρk lies between 0 and 1. They preferred this parametrisation of θ because

this felicitated posterior exploration through Markov chain Monte Carlo (MCMC). Also, this

makes the interpretation easier. If ρk is large (i.e. close to 1), the process does not depend

on factor k. Therefore, estimation of the ρks help us to determine which input variables are

more important in the emulation.

3.4 Comparison

Comparing correlation values obtained in one dimension we get the following contour plots.

In figure 1 power exponential property of Gaussian correlation is visible. Figure 2 gives us

better correlation at the values with fewer zeros, though in essence they both look the same.

Figure 3 has a different looking graph with is mainly because of its different parametrisation.

For a given constant correlation and theta parametrisation, the relationship between θ and

h is θh2 = k, where k is a constant; for beta parametrisation, the relationship is 10βh2 = k,

where k is a constant. Both the contour plots are typical for such functions.

4 Simulation Study

4.1 Simulation Setup

As discussed in the section 1, we can have four different types of models for developing

a suitable emulator. The models differ in their prediction values, likelihoods and mean

squared errors. Moreover, there are three different correlation structures that could be used

for prediction. Each of these correlation structures can use three different parametrisations

for their hyperparameters, θ. So, we will have to choose between 4 × 3 × 3 = 36 different

models for any practical application.

Our aim is to train and test each of these models with various known “test functions” and

help applied statisticians to choose between them. For the start, we begin with the previously

known models as found in various different works in past. The variety of test functions we use

would be of different input dimensions to test models better, since the models work for any
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Figure 1: Contour plot grid between parameter, θk = θ and xi − xj in one dimension, d=1.

Parameter θ varies from 0 to 40. h = xi − xj vary from 0 to 1 with 40 values. So, 40×40

correlation values were calculated at all of these combinations.

Figure 2: Contour plot grid between parameter, θk = 10β and xi−xj in one dimension, d=1.

Parameter β varies from -1.5 to 2. h = xi − xj vary from 0 to 1 with 40 values. So, 40×40

correlation values were calculated at all of these combinations.
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Figure 3: Contour plot grid between parameter, θk = −22 log(ρ) = −4 log(ρ) and h = xi−xj
in one dimension, d=1. Parameter ρ varies from -1 to 1 and each value at y-coordinate

corresponds to the same. xi − xj vary from 0 to 1 with 40 values. So, 40×40 correlation

values were calculated at all possible combinations.

dimension of input. To compare between the models, we will be comparing Mean Squared

Errors for both training and test dataset. The simulation trials would be done several times

and then averaged to get better results.

The test test functions are of several applications. They can be together found at the

https://www.sfu.ca/~ssurjano/. These test functions have been derived and used by

their authors in various practical applications and thus make an apt choice for computer

designed experiments. The functions found in the literature of emulation and prediction,

can be further grouped as physical models, trigonometric models, exponential/logarithmic

models, rational models, etc.

4.2 Goodness of fit measures

To test each model’s fit, i.e. how well does the model emulates the simulator we will use

Mean Squared Prediction Errors (MSPE). MSPE will be calculated for the test data. Then,

comparisons will be drawn between the models. Mean Square Prediction Error (MSPE)

defined as,

MSPE =
(ŷ(x∗)− y(x∗))2

n− d
.
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4.3 Correlation Simulation Setup

To find out which parameterisation we should choose for our purpose or for any general

purpose application, we compare likelihoods for several values of θ, β and ρ, i.e. the three

parametrisations studied earlier, and then, decide the parameter on the basis of least like-

lihood function. For simulating the results, 500 different equally-spaced values were taken

from θ ∈ [0, 60], β ∈ [−1.5, 3] and ρ ∈ [0, 1]. Likelihood at each of these points was calculated

and then we plotted a likelihood for varying values of parametrisation. Ideally, the curve

should be continuous and the value of parameter chosen which gives us the least value of

deviance (−2 log(Lp)). However, likelihood at all the values wasn’t calculated because of one

major reason. At various points the correlation matrix resulting from such parameterisation

was near-singular. This was more is cases when θ was small, or β was small, or ρ was large.

Although the machine epsilon value is 10−16, which is a common choice fo practitioners, in

our code we decided ignore calculations for matrices whose determinant was less than 10−14.

So, at the remaining points, we had to find the parameter value through these likelihood

plots. Finally, we had to choose a parameter that gave us a likelihood function which was

easy to minimize over the complete domain of the parameter and gave us the least likelihood

value.

In general, the likelihood for θ parametrisation appeared erratic at values of θ close

to zero. β parametrisation is an improvement over θ parametrisation to solve this issue

MacDonald et al. (2015). The deviance function for β parametrisation definitely was much

smoother and looked easier to minimize. The ρ parametrisation looked most difficult to

minimize. With increasing values of ρ, the deviance function was increasing. The plot

looked very difficult to minimize in most cases.

We tried these parametrisations with two correlation structures – Gaussian correlation

structure and Power-exponential correlation structure with p = 1.95. Theoretically, Gaussian

correlation should look smoother because of it is infinitely differentiable. However, in the

plots obtained we found Power-exponential with p = 1.95 smoother. This is perhaps because

of the fact that Gaussian correlation matrix had much more near-singular conditions than

Power-exponential correlation.

Finally, we tested for parameterisations in two different models – y = µ + z(x) and

y = µ + z(x) + ε. The value of δ = σ2
z

σ2
ε

was set as 10−2. In most cases, we found that the

model with ε had almost the same likelihood curve for both values of p, i.e. for Gaussian

correlation as well as Power-exponential correlation.

For this purpose, we started with the sinusoidal function first appeared in Currin (1988)
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(hereafter referred to as test1). The function is defined as

y(x) = sin(2π(x− 0.1)).

It takes in univariate input and gives univariate output. The function value of x is found in

the range x ∈ [0, 1]. In this case, there were stark differences between Gaussian correlation

and Power-exponential correlation with p = 2 (unless stated otherwise, consider all Power-

exponential correlation values calculated using p = 1.95 in this document). When p = 2,

i.e. Gaussian correlation function and model without ε, the optimum value of θ is close to 1;

the optimum value of β is close to -1.3; the optimum value of ρ is close to 0.6. These three

values are not very consistent with each other as −4 log(0.5) = 2.0433 and 10−1.3 = 0.05011.

When we try the same thing for Power-exponential correlation structure without ε, we get

θ close to 7; β close to 0.85 and ρ close to 0.2. These values are very much consistent with

each other as 100.85 = 7.0794 and −4 log(0.2) = 6.437. When the ε was introduced in the

model, the optimum value of θ obtained was close to 9; β was close to 0.95; and ρ was close

to 0.1. The values didn’t change upon changing the power from p = 2 to p = 1.95. These

values were consistent with each other as 100.95 = 8.9125 and −4 log(0.1) = 9.2103.

We did the same treatment with several other functions. Another one dimensional test

function was y(x) = sin(10πx)
2x

+ (x − 1)4. In this case for Gaussian correlation function, the

graph was very smooth but difficult to minimize. When using Gaussian correlation function,

optimum value of θ looks close to 60; optimum value of β looks close to 0; optimum values

of ρ looks close to 0. Clearly, this doesn’t seem to be an ideal fit. For Power-exponential

correlation, the graph was much wobbly but easier to minimize. We speculate that this was

perhaps because of fewer points for likelihood calculation in former than latter. The optimum

value of θ in this case was close to 40, β close to 1.7 and ρ close to 0. Again, these values

aren’t consistent with each other. Also, the likelihood curves of ρ parametrisation are very

bad for this function. Value of ρ close to zero tells us that there is essentially zero correlation

which isn’t plausible. Introducing ε in the model negated the effect of p = 1.954 or p = 2 and

both the plots looked the same. The optimum values were: θ = 3, β = 0.4 and ρ = 0.5. The

values are fairly consistent with each other as: 100.4 = 2.5118 and −4 ∗ log(0.5) = 2.7725.

For third test function, y(x) = log(x+ 0.1) + sin(5πx), we did similar analysis. Again in

this case too, we couldn’t say for sure which parametrisation was the best. Using Gaussian

correlation and no ε, we can say that optimum value for θ would be close 50, β would be close

to -0.2 and ρ would be close to 0, again. All of this are with likelihood functions that are

not easy to minimize. Using Power-exponential correlation, the optimum value of θ would

be close to 45, β would be close to 1.7 and ρ would be close 0. Again, other than ρ, all of
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these values are somewhat consistent with each other as 101.7 = 50.1187. When we included

ε in the model, the effect of using p = 2 or p = 1.95 was lost. Both the panels of plots

looked almost same. Optimum value of θ was 40, β was 1.6 and ρ was 0. Except ρ, they are

consistent as 101.6 = 39.810.

For the fourth test function, y(x) = exp(−1.4x)× cos(3.5πx), the likelihood curves were

smooth. For model without ε and p = 2, the optimised values were close to θ = 12, β = −0.7

and ρ = 0.7. These values again, aren’t very consistent with each other. When ε was included

in the model, optimum value of θ was 15, β was 1.2 and ρ was about 0.02. All the three

values in this case are consistent as 101.2 = 15.8489 and −4 log(0.02) = 15.64809. After

including ε in the model, like previous cases, effect of p = 2 or p = 1.95 was lost and the

plots looked very much the same. Optimum values of θ is close to 19, β is close to 1.3 and

ρ is close to 0.01. These values are also consistent with each other as 101.3 = 19.9526 and

−4 log(0.01) = 18.42068.

5 Preliminary Exploration

5.1 Comparing existing packages

Various data scientists have given different statistical packages for fitting data for Gaussian

process and the predict the values. To know and compare the correctness of all of them,

we do a small simulation exercise. We first train our model using 10 (and 50) design points

randomly generated from Latin Hypercube using maximinLHS in R. Then, we calculate the

true value with various functions. Then we generate another 20 points to test our model for

accuracy of prediction. We compare the packages for Mean Square Prediction Error (MSPE)

defined as,

MSPE =
(ŷ(x∗)− y(x∗))2

n− d
.

We do this for several functions: two 1-d functions, one 2-d function, one 5-d function and

one 8-d function.

The MSPE values are put together in a table 1. We can conclude from this that different

packages give best results for different dimensions. For 1-d functions with fewer training

points (n = 10), mlegp gives least errors; for more number of training points, rgasp gives

best results. Conclusion for the 2-d function is also exactly the same. In higher dimensions,

rgasp is still the winner, but accuracy of gpfit seems to be improving atleast for n = 10.

For 8-d function with n = 10 training points gpfit is the clear winner.
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