
Near-singularity of Gaussian Correlation Matrices

Harshvardhan

June 2017

Project: This project is about near-singularity of Gaussian correlation matrices, i.e. following class

of matrices

Rij = R(xi, xj) =

d∏
k=1

exp(−θk|xik − xjk|2).

To understand the following for Gaussian correlation matrices:

• Near-singularity and it’s measurement

• Conditions, frequency of it’s occurrence and it’s dependency on

1. Design size, n

2. Input dimension, d

3. Parameter, θ

• Getting rid of this near singularity without compromising much of accuracy.

1 Near-singularity and it’s measurement

Near singularity is a concept by which we can predict how reliable our solutions of a given matrix

equations are. Like, if we have a matrix equation Ax = b, then if A is singular then there isn’t any

solution of the equation. But, whatever is impossible at zero, would be difficult near it. So, for near

singular matrix, we need to take care that the solutions are reliable. It is very much possible that the

matrix which we have has all small values as it’s elements, hence a small determinant. But often, these

matrices will have very large inverses, and hence the solution won’t be reliable.

To define how much the the given matrix is near singular, we will use condition number. 1 First,

we will have to find the order of the condition number. Let’s say, it is of the order k. 2 Then, find

the number of significant digits in the matrix obtained, i.e. R and say that to be r. Then the matrix

is said to be near-singular if r − k ≤ 0. In real life applications, we will have to find the significant

numbers of the original correlation matrix case-by-case. We have assumed that on calculation we will

have r significant figures and then we proceed to find the near-singularity conditions of that particular

matrix by the method we described.

1Condition number is the ratio of the largest singular value and the smallest singular value of a given square matrix.
2When a number is written as r × 10k where 0 ≤ r ≤ 1 then, it is said to be of the order k − 1.

1

Another method to find if a matrix is near-singular is by checking relative error 3. in it’s solutions

by altering the elements of the matrix by a small δ, where δ is the relative error of the matrix R. If

we change the elements of R by a small proportions, say δ and observe the relative change observed in

the solution of the matrix equation Ax = b. For simplicity, consider only linear equations are present

in Ax = b. So, theoretically, if the matrix is non-singular the error in the solution also should be δ,

practically somewhere very close to δ. And if the solutions observed after changing the matrix from A

to A+∆A, the solution change to somewhat different from x+∆x, the matrix can be said near-singular.

But this method of identification is a bit troublesome and costly in calculations since we will have to

solve multiple equations.

We can neglect the determinant method of identification of near singularity as it is well covered in

the definition of condition number itself, cond(A) = ||A||||A−1||.

2 Conditions and frequency of it’s occurrence

A matrix can be said to be near singular when order of the condition number and the number of

significant digits in the entries of the matrix are equal (see section 1). The conditions in numerical

computations are more easier as double data type which usually has 14 digits of precision, so in

mathematical computations using double numbers, whenever the order of the condition number is

≥ 14, then it is said to be near singular with non-accurate solutions. Also, when r and k are both large

and nearly the same, then the matrix can be called near singular. But this definition is completely based

on the machine’s precision of double data type. So, a better method to understand the near-singularity

is to understand it in absolute terms using condition numbers and then relate the largeness of condition

number to near-singularity.

The matrix depending on design size n, input dimension d and parameter p, was computed and then

the arguments n, d and p were subsequently changed and the results are as below.

2.1 Dependence on design size n

With the increase in design size n, there was a increase in the largeness of the condition number. As n

grew up from n = 10 to n = 100 with the breaks of 10, there was an evident increase in the order of

condition number and hence of course condition number, itself. Although direct proportionality could

not be observed between near-singularity and design size, n, but seeing the increasing size of condition

number with increasing n one can easily deduce the increasing near-singularity and hence some pro-

portionality. Other arguments for generation of Gaussian correlation matrices, θ and dimension d, were

kept constant at θ = U(0, 1) and d = 10.

Following algorithm was used to test dependence on n:

3Relative error in y is defined as ∆y
y

2

Data: z will store orders of 500 Gaussian correlation matrices generated using GCM(), which is

a user defined function. order() returns the order of the numeric value passed and κ()

returns the condition number of the matrix passed as the argument. hist() displays

histogram of z for each tried n. Subsequently, ten histograms were generated.

Result: Vector z containing order of condition numbers of the 500 Gaussian correlation

matrices R

f = 1;

while f ≤ 10 do

n = 10 ∗ f ;

d = 10;

θ = U(d, 0, 1);

i = 1;

while i ≤ 500 do

R = GCM(n,d,θ);

z[i] = order(κ(R));

i = i+ 1;

end

hist(z);

f = f + 1;

end

Algorithm 1: Calculating order of Condition Number with changing n

All the histograms observed on changing n = 10 to n = 100 are appended at the end of the document.

The graph of increasing mean order of condition number with respect to design size n is also placed at

the last.

So, as observed, with the increase in design size, there is a increase in condition number and hence

subsequent increase in cases of near-singularity. Higher dimensions will lead to more near-singular

Gaussian correlation matrices and lower ones had much lesser chances to be near-singular.

2.2 Dependence on input dimension d

With the increase in the dimension size d, there was a visible decrease in condition numbers of the

matrix with no exceptions. Dimension sizes from d = 5 to d = 50 were tested. To the extent when

d = 50, the order of condition numbers reduced to one again without any exceptions. In fact, the orders

of condition numbers were observed in a decreasing fashion like shown in the figure appended. Other

arguments for generation of Gaussian correlation matrices, θ and design size n, were kept constant at

θ = U(0, 1) and n = 10.

Following algorithm was used to test dependence on n:

3

Figure (1) Change in order of condition numbers for 100 simuations for 10× 10 matrix with changing

design size from 10 to 100.

Data: z will store orders of 500 Gaussian correlation matrices generated using GCM(), which is

a user defined function. order() returns the order of the numeric value passed and κ()

returns the condition number of the matrix passed as the argument. hist() displays

histogram of z for each tried d. Subsequently, ten histograms were generated.

Result: Vector z containing order of condition numbers of the 500 Gaussian correlation

matrices R

f = 1;

while f ≤ 10 do

n = 10;

d = 5 ∗ f ;

θ = U(d, 0, 1);

i = 1;

while i ≤ 500 do

R = GCM(n,d,θ);

z[i] = order(κ(R));

i = i+ 1;

end

hist(z);

f = f + 1;

end

Algorithm 2: Calculating order of Condition Number with changing d

4

Figure (2) Change in order of condition numbers for 100 simuations for 10× 10 matrix with changing

dimension size from 5 to 50.

We tried for the order of condition numbers with increasing condition numbers from d = 5 to d = 50.

As observed, with the increase in dimension size, there is a decrease in condition number and so decrease

in cases of near-singularity. Higher dimensions lead to more non-singular Gaussian correlation matrices

and lower ones had more chances to be near-singular. When dimension size was increased to 4, there

was no case of near singularity observed for design size upto 50. So, as a rule of thumb, one can say that

for design size less than 50 and dimension greater than 4, there are no near singularity cases observed.

2.3 Dependence on parameter θ

Parameter θ is an important element in the formation of Gaussian correlation matrices. As you can

see, it is directly multiplied by the squared-difference which means that it should have important effect

in it’s generation and should affect near singularity, greatly.

We tried three parameters to study their effect on the generated matrices. The parameters tested were:

• θ = θi = (0,∞),

• θ = 1
λi

where λi = (0,∞) and

• θ = 10βk where βk = (−∞,∞).

Let’s discuss each of the parameter in detail.

5

2.3.1 θ = θi = (0,∞)

In this case, we started with smaller values of θ and then increased the value of θ to understand the

effect of theta on condition number of the matrices generated. Like previously, we tried to compute

and compare the order of the condition numbers of the matrices. We observed that condition numbers

were getting smaller with respect increase in the parameter from θ = 0,20 to θ = 0,200. In fact, with

θ as large as 200, the condition numbers were of negative orders.

Figure (3) Order of condition numbers with increasing parameter size θ from U(0,20) to U(0,200),

for parameter θ = θi = (0,∞).

2.3.2 θ = 1
λi

where λi = (0,∞)

Like last case, in this case too we started with smaller values of λ and then increased the value of λ and

observed the effect on the order of the condition number of the generated Gaussian correlation matrix.

We started with factor of f = 1, i.e.λ = U(0, 20) and went upto f = 20, i.e.λ = U(0, 400). We observed

that as the value of λ increased the order of the condition number also increased.

This table concludes the effect on near-singularity by various arguments n, d and θ.

6

Figure (4) Order of condition numbers with increasing parameter size λ from U(0,20) to U(0,400),

for parameter θ = 1
λ .

Serial No. Argument Change in CN

with increase in

argument

Near-singularity

cases

1 Design Size n Increases with

increase in n

More near-singular

cases
2 Dimension d Decreases with

increase in d

Lesser near-singular

cases
3(a) Parameter, θ = (0,∞) Decreases with

increase in upper

limit of interval for θ

Lesser near-singular

cases

3(b) Parameter, θ = 1
λ ,

λ = (0,∞)

Increases with

increase in upper

limit of interval for λ

More near-singular

cases

3 Getting rid of near-singularity

Near-singularity can be a problem. As already told in part one, whatever is impossible at zero, would be

difficult near it. We usually try do decrease the near-singularness of a matrix by pulling it’s determinant

up or pushing it’s condition number down and they are essentially the same. Let’s see how can we

alternatively solve the equation problem Ax = b so that singularity or near-singularity is not a problem.

In some of these methods, we try to analyse the errors that could be there. For this, let’s say we have

7

two equations AX = b and Ãx̃ = b, with b not equal to zero. Now, it can be proved that

||x̃− x||
||x||

≤ κ(A)
||Ã−A||
||A||

.

So, the maximum relative error is ||x̃−x||||x|| . We will use this while computing the errors when we try

generating a new matrix from the old one.

3.1 Solving using Generalised Inverse

One way to solve it is using Generalised Inverse or Psuedoinverse. The good part about psuedoin-

verse is that they are equal to the actual inverse if inverse exists. 4 Now, using the psuedoinverse we

can solve the matrix equation Ax = b.

1. Perform pre-multiplication on both sides by the psuedoinverse of the matrix A (call it Ag).

2. So, we have AgAx = Agb.

3. Now, when Ag is psuedoinverse, then AgA is identity matrix. So, the solution now is Agb.

This solution obtained isn’t exactly accurate but has least errors possible. 5

In this computation, we used the conditions of generalised inverse for checking how reliable it is.

We found that, out of 150000 computations, ||RR−1R|| = ||R|| this was false in 145452 cases; and

||R−1R|| = 1 was false in 147633, making a difference of 1.45% cases. So, one of this condition could

be safely removed so as do reduce computation time.

3.2 Solving using eigenvalue decomposition

The eigenvalue decomposition of a matrix breaks a matrix as a product of vector and its transpose with

corresponding eigenvalues as weights. If the inverse is to be calculated, then these weights change to

their reciprocals. Now, since we need to choose special boundary value to select the eigenvalues that

could be used as weights. We try for some values and try analysing the errors that would appear upon

choosing any particular boundary value.

We calculated following things:

• Condition number of the original matrix,

• ||RR−1R||2,

• ||R||2,

• R∗, which was reconstructed using
n∗<n∑
i=1

eeTλi,

• R−1 was reconstructed using
n∗<n∑
i=1

eeT 1
λi

,

4A n×m matrix A has a generalised inverse G such that AGA = A.
5By least error we mean ordinary least square errors.

8

• Sum of original eigenvalues and sum of n∗ < n eigenvalues,

• LU decomposition and reconstruction and error therein in the original matrix and the recon-

structed matrix.

3.3 Solving using Singular Value Decomposition

3.4 By introducing a small nugget in all the elements

In this method, we try to introduce a small nugget (or an error), δ, which is added to all values of the

matrix, i.e. R′ = R+ δJ , where Jij = 1, 1 ≤ i, j ≤ n.

3.5 By introducing a small nugget in diagonal elements

3.6 By introducing a small relative nugget in all the elements

3.7 Proposition: Reducing the condition numbers by dividing highest or-

dered numeric value

Let’s talk about how can we bring the condition number down. In this method we can actually bring

condition numbers down by a large order. Out of 100 simulations carried out of 100 matrices which had

large condition numbers (all were artificially generated to have large conditional numbers), the condition

numbers after processing the algorithm brought down the order of condition number by about 3 when

the highest condition number was of order 5. The histogram of the decrease in the order of condition

numbers is at the last.

Algorithm for decreasing the condition number: Following is the algorithm used to decrease

the condition number of the original matrix by multiplying row(s) with suitable number(s).

9

Data: A stores a matrix n× n, which has some irregular values, either very large or very small

in comparison to the other values of the matrix. order() is a function which returns

order of the number passed.

Result: A matrix A′ which has all equation-solving properties of A but has much lower

condition number.

i = 1;

while i ≤ n do

x = max1≤j≤nAij ;

k = order(x);

j = 1;

while j ≤ n do

A′ij = Aij/10k;

i = i+ 1;

end

i = i+ 1;

end

Algorithm 3: Creating a new matrix A′ which has lower condition number but similar equation

solving properties as original matrix A.
.

Now, let’s analyse various properties of the generated new matrix (A′).

3.7.1 Exceptions

There were no big exceptions. Small exceptions, as already told, had a decrease of one in order of

conditional number of the matrix, but all had a decrease in their condition numbers. As you can see in

the histogram, just when the highest order was of 5, there was a decrease in order by about 3 with just

3 matrices out of hundred which had decrease in their order by 1, but still, all had a decrease in their

orders.

3.7.2 Change in determinant

Again, after multiplying the determinant of the new matrix with suitable number (10k, with which the

rows were divided), the matrix regained it’s original determinant value with somewhat error (≈ 103) or

no error. The plot of the change in matrices’ determinants is placed at the last.

3.7.3 LU Decomposition

LU Decomposition and reconstruction usually involves maximum errors. So, we tried to reconstruct

the matrix A′, found after processing through algorithm and then compare it with original A′, but it

generated difference and that was big (with mean ≈ 487.7). The plot for errors observed is placed at

last. But an interesting observation was that some rows of the reconstructed matrix were exactly equal

to the original matrix! And some values were very different. Also, the errors in LU Decomposition

didn’t depend on either the original condition number or the new condition number.

10

(a) Change in order of condition numbers

for 100 simuations for 10× 10 matrix with

changing design size from 10 to 100 before

transformation.

(b) Change in matrices’ determinants for

100 artificial 10× 10 matrix after transfor-

mation through algorithm in proposition.

Figure (5) Changes observed in condition numbers and determinant of 100 artificial 10 × 10 matrix

after transformation through algorithm of proposition.

Figure (6) Errors observed in LU Decomposition of 100 artificial 10× 10 matrix after transformation

through algorithm in proposition.

3.7.4 Growing number of small values

After the application of the the algorithm it was found that many of the values became of very small

order, it became obvious to question whether more number of large numbers of more number of small

11

values were more dangerous for bringing matrix to near-singularity. After careful observation of the

artificially generated matrices and calculation of their condition numbers, it brought us the conclusion

that small values are much lesser dangerous than abnormally large values for a matrix to become

near-singular.

(a) Old Condition Numbers (b) New Condition Numbers

Figure (7) Errors observed in LU Decomposition of 100 artificial 10× 10 matrix after transformation

through algorithm of proposition with respect to original and new condition numbers of the matrices.

3.7.5 Limitation of the proposition

The proposition is suitable only when there are large values in the matrix. If the values are small ones

(like what we have in Gaussian correlation matrices), the proposition does no help. So, to conclude,

we can say that even though the proposed method will be of help for many matrices, it won’t really be

applicable to any kind of correlation matrix as all values will be less than or equal to 1.

Acknowledgements

I throughly thank Prof Pritam Ranjan sir for giving me this chance to learn. His unending guidance

has immensely enriched my knowledge in the subject. None of this would have been possible without

his patience and support.

12

