
1 
 

Statistical Modelling and Analysis of the 

Computer-Simulated Datasets 
 

 

M. Harshvardhan 

Indian Institute of Management Indore, India 

 

Pritam Ranjan 

Indian Institute of Management Indore, India 

 

 

ABSTRACT 

 

Over the last two decades, the science has come a long way from relying on only physical 

experiments and observations to experimentation using computer simulators. This chapter 

focusses on the modelling and analysis of data arising from computer simulators. It turns out that 

traditional statistical metamodels are often not very useful for analyzing such datasets. For 

deterministic computer simulators, the realizations of Gaussian Process (GP) models are 

commonly used for fitting a surrogate statistical metamodel of the simulator output.  The chapter 

starts with a quick review of the standard GP based statistical surrogate model. The chapter also 

emphasizes on the numerical instability due to near-singularity of the spatial correlation structure 

in the GP model fitting process. The authors also present a few generalizations of the GP model, 

reviews methods and algorithms specifically developed for analyzing big data obtained from 

computer model runs, and reviews the popular analysis goals of such computer experiments. A 

few real-life computer simulators are also briefly outlined here. 

 

Keywords: Big Data, Comptuer Experiments, Dynamic Computer Models, Gaussian Process 

Regression Models, Ill-conditioned Matrix, Near-singularity, Non-stationary Process, Surrogates. 

 

 

1. INTRODUCTION  

 

In early days, when the computers were not readily accessible to common people, statisticians and 

data analysts focussed on the development of innovative methodologies that were efficient for 

analyzing small datasets. Over the last two decades, we have come a long way from relying on 

only physical experiments and observations to experimentation using computer simulation models, 

commonly referred to as the computer simulators or computer models. These simulators are 

software implementation of the real-world processes, imitated based on the comprehensive 
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understanding on the underlying phenomena. The applications range from simulating 

socioeconomic behaviour, impact due to a car crash, manufacturing a compound for drug 

discovery, climate and weather forecasting, population growth of certain pest species, 

cosmological phenomena like dark energy and universe expansion, emulation of tidal flow for 

harnessing renewable energy, the simulation of a nuclear reactions, and so on. Given the easier 

access to high performance computing power such as cloud computing and cluster grids, computer 

model data is now a reality in everyday life. 

 

In this chapter, we focus on the modelling and analysis of data sets arising from such 

computer simulators. Similar to the physical experiments setup, the data obtained from the 

computer simulator runs have to be modelled and analysed for a deeper understanding of the 

underlying process. However, traditional statistical metamodels are often not very useful for 

analyzing such datasets. This is because, many a time, these computer models are deterministic in 

nature, that is, the repeated runs of such a computer simulator with a fixed input settings yield the 

same output / response. In other words, there is no replication error for the deterministic computer 

simulators. Recall that in the traditional statistical models, such as regression, the main driving 

force for model fitting and inference part of methodology is the distribution of replication errors. 

 

For deterministic computer simulators, the realizations of Gaussian Process (GP) models, 

trained by the observed simulator data, are commonly used for fitting a surrogate statistical 

metamodel of the simulator output. This is particularly crucial if the simulator is expensive to run, 

which is the case for many complex real-life phenomena. The notion of GP models gained 

popularity in late 1990 and early 2000 (e.g., Santner et al. (2003); Rasmussen and Williams (2006); 

Fang et al. (2005)), though it was first proposed in the seminal paper of Sacks et al. (1989). Section 

2 of the chapter presents a quick review of the standard GP based statistical surrogate model. We 

will also briefly discuss the implementation procedure using both the maximum likelihood method 

and the Bayesian approach. 

 

Almost all published research articles and books focus on the new methodologies and 

algorithms that can be used for analyzing the computer simulator data, and not on the small 

nuances related to the actual implementation which is extremely useful from a practitioners’ 

standpoint. This chapter emphasizes on such computational issues. In particular, Section 3 of the 

chapter discusses the numerical instability due to near-singularity or ill-conditioning of the spatial 

correlation structure which is the key building block behind the flexibility of the GP-based 

surrogate model. In practice, the majority of researchers simply use a numerical fix to overcome 

this issue, but this inadvertently compromises with other aspects of the model assumptions. We 

present an empirical study to compare different current practices to address this ill-conditioning 

problem. We also discuss the best coding practices in the implementation of such model fitting 

exercise, for instance, which of the matrix decomposition method, LU / QR / SVD / Cholesky, is 

recommended from an accuracy and time efficiency perspective. 
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Given the revolution in the computing power, it is now easy to collect and process data sets 

that are spatio-temporal and functional in nature. Dynamic computer models, i.e. the simulator 

which returns time-series response (see Zhang et al. (2018b)), is a current hot topic of research in 

applied statistics and computer experiments. Section 4 of the chapter reviews several 

generalizations of the GP model that accounts for multiple sources of uncertainty in the simulation 

model, non-stationarity of the underlying processes, and dynamic nature of such computer 

simulator outputs. 

 

With the advent of inexpensive high performance computing facilities on cloud servers and 

different grids, a plethora of big data is now available in the public domain. The standard 

methodologies and algorithms are typically not very efficient in analyzing such datasets. Section 

5 of the chapter reviews methods and algorithms specifically developed for analyzing big data 

obtained from computer model runs. Some of the approaches are methodolgoical in nature, and 

use sparse matrix computation and localized model approximation based ideas to efficiently build 

the statistical surrogate, whereas others emphasize on the clever use of parallelization on CPUs 

and graphical processing units (GPUs) for handling the big data. 

 

Section 6 of the chapter reviews the popular analysis goals of such computer experiments. 

For instance, Jones et al. (1998) proposed an innovative merit based criterion called the expected 

improvement for the process optimization; Linkletter et al. (2006) developed a variable screening 

approach for the identification of important inputs to the computer simulator and subsequently 

ignoring the non-important ones; Vernon et al. (2010), Pratola et al. (2013) and Ranjan et al. (2016) 

discussed the calibration of computer simulators to ensure the generation of realistic outputs. 

Finally, Section 7 presents brief outlines of a few real-life computer models. 

 

Over the past decade or so, a few open source software (mostly in R) have been published 

which are becoming increasingly popular among the researchers and practitioners, for instance, 

GPfit (MacDonald et al., 2015), mlegp (Dancik and Dorman, 2008), TGP (Gramacy, 2007), 

DiceKriging (Roustant et al., 2012), laGP (Gramacy et al., 2016) and DynamicGP (Zhang et al., 

2018a). In this chapter, we use several test function based computer simulators and real-life 

applications to illustrate the concepts and methodologies via these packages. We also provide code 

snippets of R to help understand how to apply use them in your research endeavours. 

 

2. GAUSSIAN PROCESS MODEL 

 
A stochastic process is a collection of random variables indexed by time or space. A Gaussian 

process is commonly used in statistical modelling because of its nice distributional properties and 

closed form expressions of moments and other summary statistics. In notation, {𝑧(𝑥), 𝑥 ∈ [0,1]𝑑}, 

in short, 𝑧(𝑥)~𝐺𝑃(0, 𝜎𝑧
2𝑅)  with 𝐸(𝑧(𝑥)) = 0 , 𝑉𝑎𝑟(𝑧(𝑥)) = 𝜎𝑧

2 , and 𝐶𝑜𝑣(𝑧(𝑥𝑖), 𝑧(𝑥𝑗)) =
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𝜎𝑧
2𝑅(𝑥𝑖, 𝑥𝑗)  where 𝑅  is a positive definite correlation function. Then, any finite subset of 

variables {𝑧(𝑥1), 𝑧(𝑥2), . . . , 𝑧(𝑥𝑛)}, for 𝑛 ≥ 1, jointly follows multivariate normal distribution. 

 

In conventional regression models, we set 𝑦𝑖 = 𝑓(𝑥𝑖, 𝛽) + 𝜀𝑖 , where 𝜀𝑖 ’s are i.i.d. 

𝑁(0, 𝜎2). Though the regression model can be very flexible if we choose the 𝑓(𝑥𝑖, 𝛽) carefully, 

this is not suitable for emulating the deterministic computer model outputs, as there is no 

replication error. In GP model (also sometimes referred to as the GP regression model), we aim to 

find a surrogate that is an interpolator of all the observed training data, that is, the fitted surface 

passes through all original (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, . . . , 𝑛. In between the training points, the smoothness 

and curvature of the fitted surrogate is guided by the correlation structure 𝑅(⋅,⋅). The GP model is 

formally presented in the next subsection. 

 

2.1 Model Statement 

 
Let the 𝑖-th 𝑑-dimensional input and 1-dimensional output of the computer simulator be denoted 

by 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑) and 𝑦𝑖 = 𝑦(𝑥𝑖), respectively. Suppose the set of all 𝑛 training data are 

held together in the design 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛} and the output vector 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛)′. Then, 

the GP model is written as  

 𝑦𝑖 = 𝜇 + 𝑧(𝑥𝑖),    𝑖 = 1,2, … , 𝑛, (1) 

 

where 𝜇  is the overall mean and 𝑧(𝑥)~𝐺𝑃(0, 𝜎𝑧
2𝑅) . Subsequently, 𝑌  follows multivariate 

normal distribution with mean 1𝑛𝜇 and variance-covariance matrix Σ = 𝜎𝑧
2𝑅𝑛, where 1𝑛 is an 

𝑛 × 1 vector of all 1’s, and 𝑅𝑛 is an 𝑛 × 𝑛 correlation matrix with (𝑖, 𝑗)-th element given by 

𝑅(𝑥𝑖, 𝑥𝑗) (see Sacks et al. (1989); Santner et al. (2003) for more details). 

 

The most crucial component of this GP model is the correlation structure, which dictates 

the ‘smoothness’ of the interpolator that passes through the observations. In a multidimensional 

scenario, it tells us how wobbly and differentiable the fitted surrogate is. By definition, any positive 

definite correlation structure would suffice, but the most popular choice is the Gaussian 

correlation. In Machine Learning and Geostatistics literature, Gaussian correlation is also referred 

to as the radial basis function. Gaussian correlation is a special case (with 𝑝𝑘 = 2) of the power-

exponential correlation given by  

 

 𝑅(𝑥𝑖, 𝑥𝑗) = ∏𝑑
𝑘=1 exp{−𝜃𝑘|𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑝𝑘}, (2) 

 

where 𝜃𝑘 and 𝑝𝑘 controls the wobbliness of the surrogate in the 𝑘-th coordinate. 

 

The model described by (1) and (2) is typically fitted by either maximizing the likelihood 

or via Bayesian algorithms like Markov chain Monte Carlo (MCMC). As a result, the predicted 

response �̂�(𝑥0) for an arbitrary input 𝑥0 can be obtained as a conditional expectation from the 
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following (𝑛 + 1)-dimensional multivariate normal distribution:  

 

 (
𝑦(𝑥0)
𝑌

) = 𝑁 ((
𝜇
𝜇1𝑛

) , (
𝜎𝑧

2 𝜎𝑧
2𝑟′(𝑥0)

𝜎𝑧
2𝑟(𝑥0) 𝜎𝑧

2𝑅𝑛

)), (3) 

 

where 𝑟(𝑥0) = [𝑐𝑜𝑟𝑟(𝑥1, 𝑥0), … , 𝑐𝑜𝑟𝑟(𝑥𝑛, 𝑥0)]′. The predicted response �̂�(𝑥0), which is also the 

best linear unbiased predictor (BLUP), is the same as the conditional mean: 

  

 𝐸(𝑦(𝑥0)|𝑌) = 𝜇 + 𝑟(𝑥0)′𝑅𝑛
−1(𝑌 − 1𝑛𝜇), (4) 

 

and the associate prediction uncertainty estimate (denoted by 𝑠2(𝑥0)) can be quantified by the 

conditional variance:  

 

 𝑉𝑎𝑟(𝑦(𝑥0)|𝑌) = 𝜎𝑧
2(1 − 𝑟′(𝑥0)𝑅𝑛

−1𝑟(𝑥0)). (5) 

 

In practice, the parameters 𝜇, 𝜎  and 𝜃 = (𝜃1, . . . , 𝜃𝑑)  are replaced by their estimates 

(maximum likelihood estimates or posterior means in MCMC) in (4) and (5). 

 

2.2 Implementation Details 

 

The key aspects of the implementation here is to efficiently maximize the likelihood and evaluate 

the predicted mean response and associated uncertainty measure. For this GP model, the likelihood 

is simply the joint probability density function of the multivariate normal distribution of 𝑌, i.e., 

  

 −2log(𝐿) ∝ log(|𝑅𝑛|) + 𝑛log(𝜎𝑧
2) +

(𝑌−1𝑛𝜇)′𝑅𝑛
−1(𝑌−1𝑛𝜇)

𝜎𝑧
2 , (6) 

 

where |𝑅𝑛| is the determinant of the 𝑛 × 𝑛 correlation matrix 𝑅𝑛. 

 

Minimizing −2log(𝐿) gives closed form expressions for �̂� and �̂�𝑧
2 as  

 

 �̂� = (1𝑛′𝑅𝑛
−11𝑛)−1(1𝑛′𝑅𝑛

−1𝑌), (7) 

and  

 �̂�𝑧
2 =

(𝑌−1𝑛�̂�)′𝑅𝑛
−1(𝑌−1𝑛�̂�)

𝑛
, (8) 

 

where 𝑅𝑛  is a function of unknown 𝜃 = (𝜃1, . . . , 𝜃𝑑) . Finding good estimates of the 𝑑 -

dimensional correlation hyperparameter vector 𝜃  is not easy. It is common to use numerical 

optimization techniques like multi-start Gauss-Newton type methods or evolutionary algorithms 

like particle swarm method and genetic algorithms to find 𝜃. 
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For the convenience of researchers and practitioners in this area, several R packages have 

been developed that provide easy implementation of fitting this GP model, for example, TGP 

(Gramacy, 2007), mlegp (Dancik and Dorman, 2008), DiceKriging (Roustant et al., 2012) and 

GPfit (MacDonald et al., 2015). 

 

In this section, we briefly illustrate the usage of GPfit (MacDonald et al., 2015) for fitting 

a GP model to a simulated data set. Suppose the simulator output is generated by a one-dimensional 

test function 𝑓(𝑥) = log(𝑥 + 0.1) + sin(5𝜋𝑥), and 𝑋 = {𝑥1, . . . , 𝑥10} is a randomly generated 

training set as per the space-filling Latin hypercube design. Then the GP model can be fitted using 

the following code:  

  

GPmodel = GPfit::GP_fit(X, Y, corr = list(type="exponential", power=2)) 

 

The GPfit object GPmodel contains the parameter estimates, which can be further passed 

on for generating the predictions along with uncertainty estimates at a test set. Figure 1 shows the 

fitted surrogate along with the true response.  

  
Figure 1 The blue dashed curve is the mean prediction obtained using 𝐺𝑃𝑓𝑖𝑡, the black solid curve is the true simulator response 
curve 𝑓(𝑥) = 𝑙𝑜𝑔(𝑥 + 0.1) + 𝑠𝑖𝑛(5𝜋𝑥), the black solid dots are the training data points, and the shaded area represent the 
uncertainty quantification via �̂�(𝑥) ± 2𝑠(𝑥).   



7 
 

 

In GPfit package, the estimate of 𝜃 is obtained by minimizing the deviance (−2log(𝐿𝑝), 

where 𝐿𝑝  is the profiled likelihood obtained after substituting �̂�  and �̂�𝑧
2 ) using a multi-start 

gradient based search (L-BFGS-B) algorithm. As a side note, they use a slightly different 

parametrization, i.e., 𝜃𝑘 = 10𝛽𝑘 , and then find optimal 𝛽 = (𝛽1, . . . , 𝛽𝑑) (see Section 3.4 for 

more discussion on reparametrization of 𝑅(𝑥𝑖, 𝑥𝑗)). The starting points of L-BFGS-B are selected 

using the 𝑘-means clustering algorithm on a large space-filling design over the search space, after 

discarding 𝛽  vectors with high deviance. The control parameter is a vector of three tunable 

parameters used in the deviance optimization algorithm. The default values correspond to choosing 

2𝑑 clusters based on 80𝑑 best points (smallest deviance) from a 200𝑑 - point random space-

filling design in 𝛽 -space. One can enhance the robustness of the optimal 𝛽  estimates by 

increasing the arguments of control in GP_fit, however, this is a computationally expensive, with 

𝑂(𝑛3) complexity, where 𝑛 is the size of the training data. Thus, one should balance between the 

computational cost and the robustness of likelihood optimization. For details see MacDonald et al. 

(2015). 

 

3. COMPUTATIONAL ISSUES IN FITTING GP MODELS 

 

Though fitting a GP model to the training data and prediction on a test set may seem like 

straightforward tasks, there are several issues like numerical instability, prediction accuracy, biases 

due to miss-specified model, and some concern due to the heavy computational cost, particularly 

when dealing with big data. In this section, we review a few such outstanding issues and popular 

approaches to address them. 

 

3.1 Matrix Decomposition in Likelihood Evaluation 

 

Different components of the GP model, including the likelihood (equivalently, the deviance 

expression), estimates of 𝜇 and 𝜎𝑧
2, the predicted mean response and the uncertainty estimate (as 

shown in (4) - (8)), contain two computationally expensive terms, the determinant of 𝑅𝑛 and the 

inverse of 𝑅𝑛. For finding optimal 𝜃 (or equivalently, 𝛽, as in GPfit), these expressions have to 

be evaluated hundreds to thousands of times for different realizations of 𝜃. If the size of the 

training data, 𝑛, is small, numerous evaluations of |𝑅𝑛| and 𝑅𝑛
−1 by any method is not a concern 

from computational cost standpoint, however, for large 𝑛 , fast evaluations of |𝑅𝑛|  and 𝑅𝑛
−1 

become crucial. 

 

It is common to use matrix decomposition methods like LU, Cholesky, QR and SVD, for 

efficient computation of determinants and inverses of 𝑅𝑛, and terms like 𝑅𝑛
−1𝑤, for some 𝑛 × 1 

vector 𝑤. It turns out that these decomposition methods have different computational cost, and 

more importantly, exhibit different precision as well. In this section, we present a simulation study 

based comparison of these matrix decomposition methods for Gaussian correlation (2). The 
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objective is to choose the right matrix decomposition method while implementing the GP model 

procedure. 

 

The results are averaged over 1000 simulations. For each replication, we randomly 

generate 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} using a space-filling Latin hypercube design over [0,1]𝑑 and 𝜃 ∈

(0, ∞)𝑑, and then evaluate 𝑅𝑛 as in (2). Subsequently, we perform the decomposition and then 

obtain the reconstituted matrix. For instance, for LU decomposition, we obtain the triangular 

matrices 𝐿 and 𝑈 via lu(𝑅𝑛), and then find 𝑅𝑛
∗ = 𝐿𝑈. In theory, 𝑅𝑛

∗ = 𝑅𝑛, but in practice, they 

can be somewhat different. Both the empirical simulation study and the theoretical complexity 

measured in terms of big O, show that Cholesky and SVD have much greater accuracy and are 

computationally cheaper as compared to LU and QR. 

 

Note that Cholesky decomposition method uses two sets of linear solves for computing 

𝑅𝑛
−1𝑤. That is, if 𝑅𝑛 = 𝐿𝐿𝑇, then 𝑅𝑛

−1𝑤 = 𝑠𝑜𝑙𝑣𝑒(𝐿𝑇 , 𝑠𝑜𝑙𝑣𝑒(𝐿, 𝑤)). Whereas, the SVD method 

finds 𝑅𝑛
−1 by inverting the singular values as  

 

 𝑅𝑛
−1 = ∑𝑛

𝑖=1 𝑢𝑖𝑣𝑖
𝑇/𝑑𝑖 , 

 

where 𝑅𝑛 = 𝑈𝐷𝑉𝑇  with 𝑈 = [𝑢1, . . . , 𝑢𝑛], 𝑉 = [𝑣1, . . . , 𝑣𝑛] and 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, . . . , 𝑑𝑛). It turns 

out that for applications with large 𝑛  and small input dimension 𝑑 , both of these matrix 

decomposition methods suffer from numerical instability due to ill-conditioning of 𝑅𝑛. In this 

chapter, we only focus on Cholesky and SVD as the other decomposition methods are less efficient 

and inaccurate. 

 

3.2 Near-singularity of Correlation Matrix 

 

Recall that an 𝑛 × 𝑛 matrix is said to be singular if at least one of its rows (or columns) is linearly 

dependent on the rest of rows (or columns), i.e., the matrix does not have full row (or column) 

rank, i.e., the determinant is zero. However in a near-singular matrix, the determinant is not exactly 

equal to zero but very small. One popular method of quantifying the near-singularity of 𝑅𝑛 is via 

its condition number defined by, 𝜅(𝑅𝑛) =∥ 𝑅𝑛
−1 ∥⋅∥ 𝑅𝑛 ∥= 𝜆𝑛/𝜆1, where ∥⋅∥ is the 𝐿2 norm of 

the matrix, and 𝜆𝑖 is the 𝑖-th smallest eigen value of 𝑅𝑛. An 𝑛 × 𝑛 matrix 𝑅𝑛 is said to be near-

singular (or ill-conditioned) if 𝜅(𝑅𝑛)  is large. For Gaussian correlation, the near-singularity 

occurs when ∑𝑑
𝑘=1 𝜃𝑘|𝑥𝑖𝑘 − 𝑥𝑗𝑘|2 ≈ 0, which implies either the two data points 𝑥𝑖  and 𝑥𝑗  are 

close to each other and/or 𝜃𝑘’s are close to zero. This further implies that the condition number is 

directly proportional to the sample size 𝑛 and inversely proportional to 𝑑 and 𝜃. In other words, 

the larger the training data size, it is more likely to run into near-singularity, whereas if the input 

dimension and/or 𝜃 are large, it is less likely to run into near-singularity. 

 

From an implementation standpoint, if the condition number is larger than say 1/𝜀𝑀 , 
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where 𝜀𝑀 is the machine precision (𝜀𝑀=2.220446e-16 for our desktop computer), the determinant 

of 𝑅𝑛  would be too close to zero, and the linear solves using 𝑅𝑛  become too sensitive and 

unreliable, if at all obtainable. If 𝜅(𝑅𝑛) > 1/𝜀𝑀, Cholesky decomposition of 𝑅𝑛 would crash, 

rendering the method infeasible. However, one can use SVD approach and approximates 𝑅𝑛
−1 as  

 

 𝑅𝑛
−1 ≈ ∑𝑛

𝑖=1 𝑢𝑖𝑣𝑖
𝑇/𝑑𝑖 ⋅ 𝐼(𝑑𝑖 > 𝜂), 

 

where 𝜂 is a pre-specified threshold that determines a cut-off for not using very small singular 

values in approximating the inverse of 𝑅𝑛. For details, see Jones et al. (1998) and Booker et al. 

(1999). It turns out that the SVD based approach is very sensitive with respect to the choice of 𝜂. 

That is, a large value of 𝜂 would make the approximated 𝑅𝑛
−1 too far from the true (unobservable) 

𝑅𝑛
−1, whereas a small value of 𝜂 would make approximated 𝑅𝑛

−1 unreliable due to the inclusion 

of very large 1/𝑑𝑖. 

 

A popular technique to resolve this numerical issue is to use a “nugget" (or also referred to 

as a “jitter") term 𝛿 in the model by replacing 𝑅𝑛
−1 with 𝑅𝑛,𝛿

−1 , where 𝑅𝑛,𝛿 = 𝑅𝑛 + 𝛿𝐼𝑛  (Neal, 

1997). This method works because 𝜅(𝑅𝑛,𝛿) = (𝜆𝑛 + 𝛿)/(𝜆1 + 𝛿) would be much smaller than 

𝜅(𝑅𝑛). Similar to the SVD based approximation, here also one needs to find 𝛿, but interestingly, 

this nugget based approach is less sensitive to the choice to 𝛿 as compared to selecting appropriate 

𝜂 in the SVD method. Gramacy and Lee (2012) suggests estimating 𝛿 along with other model 

parameters in a Bayesian framework, however, the search space for 𝛿 has to be carefully chosen 

so that the lower limit is large enough to ensure well-conditioned 𝑅𝑛,𝛿. To this effect, Ranjan et 

al. (2011) developed a lower-bound on 𝛿  which suffices well-behaved and accurate 

approximation of 𝑅𝑛. 

 

If we choose 𝜂, 𝛿 > 0, the resultant mean prediction function is not an interpolator. Thus, 

both the nugget and SVD based approaches lead to methodological consequences which may not 

be desirable for a deterministic simulator. Ranjan et al. (2011) proposed an iterative scheme that 

uses the lower bound of nugget to start with for well-behaved 𝑅𝑛,𝛿  and then the iterative 

regularization makes the predictor converge to the interpolator. The following R code snippet 

illustrates the usage of GPfit package to specify the number of iteration (say, 𝑀 = 5) in this 

iterative procedure:  

 

GPprediction = GPfit::predict.GP(GPmodel, xnew, M=5) 

 

Of course, one can argue on a philosophical ground that none of the realistic computer 

model is deterministic, and some sort of uncertainties and biases are always present. Thus, one 

must include a non-zero nugget term, and some amount of smoothing is a desirable feature for a 

predicted surrogate. Even in such a case, if the nugget parameter is estimated using the maximum 

likelihood method or a Bayesian approach (via MCMC), the lower limit of the search space for 𝛿 
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must be large enough to ensure well-conditioned 𝑅𝑛,𝛿, for which the lower-bound of 𝛿 proposed 

by Ranjan et al. (2011) can be used. 

 

Alternatively, one can consider approximating 𝑅𝑛
−1 by 𝑅𝑛,𝛿

∗−1 = (𝑅 + 𝛿𝐽)−1, where 𝐽 is an 

𝑛 × 𝑛 matrix of all 1’s. A quick calculation reveals that the predicted surrogate similar to (4) - (5) 

will be an interpolator, unlike the scenario when we used (𝑅 + 𝛿𝐼)−1 as an approximation of 𝑅−1. 

However, a thorough investigation is required to compare the model properties between (𝑅 + 𝛿𝐼) 

versus (𝑅 + 𝛿𝐽) approaches. 

 

3.3 Reparameterisation of Correlation Functions 

 

The estimation of the correlation hyperparameter 𝜃 = (𝜃1, . . . , 𝜃𝑑) is the most crucial part of the 

GP model fitting procedure. Recall that the deviance function has to be minimized with respect to 

𝜃 ∈ (0, ∞). For many applications, the deviance functions for such GP models are not easy to 

minimize. As an example, Figure 2 shows the deviance function with respect to 𝜃 for the 1-

dimensional test function displayed in Figure 1. Since a large value of 𝜃  implies wigglier 

surrogate, we do not expect the estimated 𝜃 to be too big here. As a result, the deviance is a non-

trivial function to minimize. 

 

  
Figure 2 Deviance with respect to 𝜃 for the test function and data used in Figure 1. The left panel is the zoomed-in version of 
the right panel near zero.   

 
In the computer experiment literature, researchers have considered a variety of re-

parametrizations of this Gaussian correlation. In this section, we briefly discuss these 

parametrizations and compare their suitability for easier optimization. 
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A popular alternative representation of the correlation function uses 𝜆𝑘  (= 1/𝜃𝑘 ), and 

refers to it as a correlation length parameter (Santner et al., 2013). Thus, the correlation function 

becomes:  

 

 𝑅(𝑥𝑖, 𝑥𝑗) = exp{− ∑𝑑
𝑘=1 |𝑥𝑖𝑘 − 𝑥𝑗𝑘|2/𝜆𝑘}, 

 

where 𝜆𝑘 ∈ (0, ∞). Of course, this correlation length parameter has more intuitive interpretation, 

and 𝜆𝑘  close to zero indicates low spatial correlation and large 𝜆𝑘  implies high correlation 

between 𝑦(𝑥𝑖) and 𝑦(𝑥𝑗). However, as expected, this parameterization would not really ease of 

the optmization of likelihood with respect to 𝜆𝑘. 

 

Linkletter et al. (2006) replaced 𝜃𝑘  with −4log(𝜌𝑘) , i.e., the new correlation 

hyperparameter, 𝜌𝑘 ∈ (0,1) . This parametrization gives slightly better interpretability, as 𝜌𝑘 

close to 1 means smoother fit with highly correlated nearby responses, whereas 𝜌𝑘 close to zero 

indicates spatially uncorrelated (i.e., very wiggly) surrogate fit. Unfortunately, this parametrization 

does not help much in the optimization of likelihood with respect to 𝜌𝑘 . For the same 1 -

dimensional test function and data as used in Figure 2, the deviance surface with respect to 𝜌 is 

equally difficult to optimize. 

 

 
Figure 3 Deviance with respect to ρ for the test function and data in Figure 1.   

 

Recently, MacDonald et al. (2015) suggested another parametrization using 𝛽𝑘  ( =

log10(𝜃𝑘)). The main idea here is that the search for smooth fits correspond to negative 𝛽𝑘 values, 

whereas, wigglier surrogates are represented by large positive 𝛽𝑘. Moreover, the search space is 



12 
 

now linearized, so the optimization would be lot easier. Figure 4 presents the likelihood function 

with respect to 𝛽 , and clearly this is a better function to minimize as compared to other 

parametrization presented above. 

 

 
Figure 4 Deviance with respect to β for the test function and data in Figure 1.   

 
It is important to note that the practitioners have the liberty to choose an alternative 

correlation structure all together instead of Gaussian correlation. However, reparametrizations 

discussed above can also be applied to another correlation structure. 

 

3.4 Choice of Correlation Function 

 

Historically, Gaussian correlation function or kernel is the most popular choice for defining spatial 

correlation in many stochastic processes. The applications range from Geostatistics to Machine 

Learning and Artificial Intelligence. The commonly used related terminologies are kriging and 

radial basis kernel. 

 

Recall that the Gaussian correlation is a special case of the power exponential correlation 

function presented in (2). For real-life applications the power parameters 𝑝𝑘 ∈ [1,2], which can 

also be estimated along with other model parameters. Assuming the other model parameters are 

fixed, 𝑝𝑘 controls the smoothness (differentiability) of the predicted surrogate surface. See Figure 

5 for an illustration of the GP model with different power exponential correlation for the same 1-

dimensional test function as in in Figure 1. 
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Figure 5 Mean prediction as per the GP model fit with power exponential correlation with different 𝑝𝑘 for the test function and 
data used in Figure 1. The solid curve represents the true underlying simulator output.   

 
Figure 5 shows that the predicted surrogate is spikier at the training points as 𝑝𝑘 gets closer to 1, 

and much smoother as 𝑝𝑘 is closer to 2. Theoretically, it can be shown that for 𝑝𝑘 ∈ [1,2), the 

correlation kernel is differentiable only once, whereas for 𝑝𝑘 = 2 , the kernel is infinitely 

differentiable. Thus, the Gaussian correlation may seems like the most desirable correlation kernel 

for GP modelling, however, as shown in Ranjan et al. (2011), the probability of a correlation matrix 

being ill-conditioned is substantially reduced if the power is reduced from 𝑝𝑘 = 2 to even 𝑝𝑘 =

1.95 . Furthermore, from a practical standpoint, 𝑝𝑘  close to 2  leads to reasonably smooth 

predictor (see 𝑝𝑘 = 1.9 vs. 𝑝𝑘 = 2.0 curves in Figure 5). 

 

Another popular correlation kernel, originated from the kriging literature in Geostatistics, 

is called the Matern correlation. This correlation was originally obtained by letting the parameter 

in the Gaussian correlation follow Gamma distribution which yielded a positive and spherically 

symmetric density proportional to 𝑅(𝑥𝑖, 𝑥𝑗) and then finding that its Fourier transform was also a 

probability density (Guttorp and Gneiting, 2006). The Matern correlation kernel is given by:  

 

 𝑅(𝑥𝑖, 𝑥𝑗) = ∏𝑑
𝑘=1

1

Γ(𝜈)2𝜈−1
(√2𝜈|𝑥𝑖𝑗 − 𝑥𝑗𝑘|𝜃𝑘)𝜈𝜅𝜈(√2𝜈|𝑥𝑖𝑗 − 𝑥𝑗𝑘|𝜃𝑘), (9) 

 

where 𝜅𝜈 is modified Bessel function of order 𝜈 and Γ(𝑛) is Gamma function calculated at 𝑛. 

The sample paths are ⌈𝜈⌉ − 1/2 times differentiable. 
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For large datasets in particular, Kaufman et al. (2011) used compactly supported 

correlation kernel to make the correlation matrices sparse, which leads to efficient evaluation and 

hence optimization of the likelihood using sparse matrix algorithms. Let 𝜏 = (𝜏1, . . . , 𝜏𝑑) be the 

cutoff to determine the trimmed support of the design points, such that, 𝑅𝑘(|𝑥𝑖𝑘 − 𝑥𝑗𝑘|; 𝜏𝑘) = 0 

whenever |𝑥𝑖𝑘 − 𝑥𝑗𝑘| ≥ 𝜏𝑘, where 𝑅𝑘(𝑥𝑖𝑘, 𝑥𝑗𝑘) represents the correlation between 𝑥𝑖 and 𝑥𝑗 for 

the 𝑘-th coordinate. Assuming the product correlation form as earlier, let  

 

 𝑅(𝑥𝑖, 𝑥𝑗; 𝜏) = ∏𝑑
𝑘=1 𝑅𝑘(|𝑥𝑖𝑘 − 𝑥𝑗𝑘|; 𝜏𝑘), 

 

where Kaufman et al. (2011) used 𝑅𝑘(ℎ𝑘; 𝜏𝑘) = (1 − ℎ𝑘/𝜏𝑘)cos(𝜋ℎ𝑘/𝜏𝑘) + sin(𝜋ℎ𝑘/𝜏𝑘)/𝜋 . 

This correlation kernel is twice differentiable and is mean square differentiable. 

 

The range parameter, 𝜏𝑘, plays an important role in this approach; very similar but greater 

than the role of 𝜃 in power exponential correlation. First, they control the degree of correlation in 

each dimension like correlation hyperparameter, 𝜃. Second, unlike 𝜃𝑘, 𝜏𝑘 controls the degree of 

sparsity in the matrix. 

 

4. VARIATIONS OF GP MODELS 

 

The GP model described thus far is the most basic version of the statistical surrogate developed by 

Sacks et al. (1989) for emulating the outputs of a scalar-valued deterministic computer model. 

Over the period of time, a host of variations and generalizations have been developed. In this 

section, we briefly review a few popular generalizations. 

 

4.1 Non-constant Mean Function 

  

In the context of GP models with different mean functions, thus far, four different types of Kriging 

models have been developed: Ordinary Kriging, Simple Kriging, Universal Kriging and Blind 

Kriging. The GP model presented in Section 2 is referred to as the Ordinary Kriging model (i.e., 

the model with constant mean 𝜇). 

 

If we pre-specify 𝜇 = 0 in the GP model of Section 2, it is referred to as the Simple 

Kriging. The closed form expressions for 𝜎𝑧
2 and the mean prediction along with the uncertainty 

estimates are obtained by substituting 𝜇 = 0 in the expressions for Ordinary Kriging:  

 

 𝐸(𝑦(𝑥0)|𝑌) = 𝑟(𝑥0)′𝑅𝑛
−1𝑌,        𝑉𝑎𝑟(𝑦(𝑥0)|𝑌) = 𝜎𝑧

2(1 − 𝑟(𝑥0)′𝑅𝑛
−1𝑟(𝑥0)), 

 

where �̂�𝑧
2 = 𝑌′𝑅𝑛

−1𝑌/𝑛 and the correlation hyperparameter 𝜃 (or another equivalent parameter) 

is estimated by maximizing the profiled likelihood. 
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Universal Kriging is a generalization of the Ordinary Kriging model, with the mean term 

𝜇 being a linear function of the known basis, i.e., 𝜇(𝑥0) = ∑𝑚
𝑗=0 𝑓𝑗(𝑥0)𝛾𝑗, where 𝛾0 is typically 

an intercept like term with 𝑓0(𝑥0) = 1 for all 𝑥0. The parameters and the mean prediction are 

obtained similarly as in the Ordinary Kriging, i.e.,  

 

 𝛾 = (𝐹′𝑅𝑛
−1𝐹)−1(𝐹′𝑅𝑛

−1𝑌),        �̂�𝑧
2 =

(𝑌−𝐹𝛾)′𝑅𝑛
−1(𝑌−𝐹𝛾)

𝑛
, 

and  

 

𝐸(𝑦(𝑥0)|𝑌) = 𝑓(𝑥0)′𝛾 + 𝑟(𝑥0)′𝑅𝑛
−1

(𝑌 − 𝐹𝛾),    𝑉𝑎𝑟(𝑦(𝑥0)|𝑌) = 𝜎𝑧
2(1 − 𝑟′(𝑥0)𝑅𝑛

−1𝑟(𝑥0)). 

 

Since it is impractical to assume that the basis functions in the mean term are known beforehand, 

Joseph et al. (2008) developed a new methodology to choose an appropriate set of basis functions 

from a class of feasible bases, for the problem at hand. They referred to this variation as the Blind 

Kriging model. 

 

4.2 Noisy GP Model 

 

As discussed earlier, realistic simulators of complex processes are sometimes non-deterministic, 

and hence the GP models presented thus far are not very appropriate to emulate such simulator 

behaviour. In the Machine Learning and Computer Experiment literature, the following version of 

the GP model has gained much popularity:  

 𝑦𝑖 = 𝜇 + 𝑧(𝑥𝑖) + 𝜀𝑖,    𝑖 = 1,2, . . , 𝑛, 

 

where the additional error term 𝜀𝑖’s are iid 𝑁(0, 𝜎𝜀
2) and independent of {𝑧(𝑥), 𝑥 ∈ [0,1]𝑑}, the 

GP with mean zero, variance 𝜎𝑧
2 and correlation kernel 𝑅(⋅,⋅), as defined earlier (see Santner et 

al. (2003) for details). Of course, one can use different mean function instead of a constant mean 

𝜇 as discussed in the previous section. 

 

The inclusion of an additional error term does not introduce much deviation from the 

regular model fitting procedure, because the joint distribution of 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)  is 

multivariate normal with mean 𝜇1𝑛 and variance-covariance matrix Σ = 𝜎𝑧
2𝑅𝑛 + 𝜎𝜀

2𝐼𝑛, where 𝐼𝑛 

is the 𝑛 × 𝑛 identity matrix. Note that rewriting Σ = 𝜎𝑧
2(𝑅𝑛 + 𝛿𝐼𝑛), where 𝛿 = 𝜎𝜀

2/𝜎𝑧
2 translates 

this model to the GP model with a nugget term as in Ranjan et al. (2011). Of course, here 𝛿 will 

also have to be estimated along with other model parameters. As earlier, one must be cautious in 

defining the search space for 𝛿  as very small 𝛿  may lead to near-singular/ill-conditioned Σ. 

Moreover, there is no need to adopt the iterative regularization as the simulator is noisy and 

interpolation is not the objective. 
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4.3 Dynamic GP Model 

 

Higdon et al. (2008) proposed an SVD-based GP model for the emulation of computer simulators 

with highly multivariate outputs, and recently, Zhang et al. (2018b) used it for simulators with 

time series responses. Consider a deterministic simulator with 𝑑 -dimensional input 𝐱 ∈ ℝ𝑞 , 

which returns a time series output 𝐲(𝐱) ∈ ℝ𝐿 of length 𝐿. 

 

Let 𝐗 = [𝐱1, … , 𝐱𝑁]𝑇  be the 𝑁 × 𝑞  input matrix and 𝐘 = [𝐲(𝐱1), … , 𝐲(𝐱𝑁)]  be the 

𝐿 × 𝑁  matrix of time series responses, then the SVD on 𝐘  gives 𝐘 = 𝐔𝐃𝐕𝑇 ,  where 𝐔 =

[𝐮1, … , 𝐮𝑘] is an 𝐿 × 𝑘 column-orthogonal matrix of left singular vectors, with 𝑘 = 𝑚𝑖𝑛{𝑁, 𝐿}, 

𝐃 = diag(𝑑1, … , 𝑑𝑘) is a 𝑘 × 𝑘 diagonal matrix of singular values sorted in decreasing order, and 

the matrix 𝐕 is an 𝑁 × 𝑘 column-orthogonal matrix of right singular vectors. The SVD-based GP 

model for a deterministic simulator is given by,  

 

 𝐲(𝐱) = ∑𝑝
𝑖=1 𝑐𝑖(𝐱)𝐛𝑖 + 𝜀, (10) 

 

where the orthogonal basis 𝐛𝑖 = 𝑑𝑖𝐮𝑖 ∈ ℝ𝐿, for 𝑖 = 1, … , 𝑝, are the first 𝑝 vectors of 𝐔 scaled 

by the corresponding singular values. The coefficients 𝑐𝑖’s in (10) are random functions assumed 

to be independent scalar response GP models, i.e., 𝑐𝑖~GP(0, 𝜎𝑖
2𝑅𝑖(⋅,⋅;𝑖 ))  for 𝑖 = 1, … , 𝑝 

(Rasmussen and Williams, 2006). The residual error 𝜀  in (10) is assumed to be independent 

Gaussian white noise, that is, 𝜀~𝒩(0, 𝜎2
𝐿). 

 

The built-in function called svdGP in the R package DynamicGP provides an easy 

implementation of this surrogate model (Zhang et al., 2018a). The arguments of svdGP can also 

be tuned to speed up the computation by parallelization. 

 

4.4 Non-stationary GP Model 

 

Though we have not been very explicit yet, most of the discussion on GP models assumed that the 

underlying process / phenomena is stationary. The standard GP itself is defined to be covariance 

(i.e., weak) stationary. However, in reality, there are several phenomena that are non-stationary, 

which in a lay man terms is like a function with abrupt changes in the curvature or shape. For 

instance, Figure 6 shows two real-life applications. The left panel represents the output of a 

simplified simulator which generates the average maximum extractable power from the Minas 

Passage, Bay of Fundy, Nova Scotia, Canada, given that one turbine fence is already present in the 

Passage (Chipman et al., 2012). The right panel presents the simulated measurements of the 

acceleration of the head of a motorcycle rider as a function of time in the first moments after an 

impact (see mcycle data in the R library MASS for details). These are undoubtedly non-stationary 

processes, and standard GP models would not serve as adequate surrogate models (see the 

rightmost panel of Figure 7). 
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Figure 6 Left panel: maximum extractable power from the Minas Passage (simplified computer model for turbine placement in 
the Bay of Fundy, Nova Scotia, Canada, see Chipman et al. (2012)). Right panel: acceleration of the head of a motorcycle rider as 
a function of time in the first moments after an impact (see mcycle in R library MASS for details). 

 
One naive way to capture the non-stationarity is to detrend the data via carefully chosen 

mean basis (as discussed in Section 4.1), and then use the standard GP model to emulate the 

residual stationary process. Over the last two decades, several innovative surrogates have also been 

developed to emulate the non-stationary computer model responses. For instance, Higdon et al. 

(1999) made some fundamental methodological contribution towards the non-stationary 

correlation structure, but the computer experiment literature itself was not mature enough until 

early - mid 2000’s. Paciorek and Schervish (2004) further formalized this GP-based emulator. 

Gramacy (2007) combined the idea of regression trees with GP model and developed Treed GP 

model (TGP), which is simply fitting GP models instead of constants to the terminal nodes. Ba 

and Joseph (2012) suggested a sum of two GP model strategy to separately capture the local 

nuances and fluctuations versus the overall global trend. Chipman et al. (2012) further 

demonstrated that a Bayesian Additive Regression Tree (BART) can easily be used to emulate 

non-stationary computer simulator outputs and are perhaps more reliable than many other 

competitors for large datasets (see Figure 7 for an illustration on the motorcycle data). Recently, 

Volodina and Williamson (2018) used a mixture of GP based approach for this surrogate building 

exercise. 
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Figure 7 Mean prediction for the Motor Cycle data (source: R library MASS) as per BART model (Chipman et al., 2012), TGP model 
(Gramacy, 2007) and standard GP model via GPfit (MacDonald et al., 2015) (in order, from left to right). 

 
5. BIG DATA AND HIGH PERFORMANCE COMPUTING 

 

The accelerated growth in the computing power of data processing and storage has led to a new 

area of science called the BIG data. Specifically, the data from computer simulators can easily get 

really large if the simulator is computationally fast. Over the last decade, the researchers have been 

investigating both aspects, the innovative methodologies for modelling and analysis, and efficient 

implementation techniques and algorithms for BIG data obtained from computer simulators. 

 

5.1 Methodological Innovations 

 
For Gaussian process models, exact calculations of 𝑅𝑁

−1 requires 𝑂(𝑁3) operations, which has to 

be done numerous times for likelihood optimization. Thus, efficient evaluation of the likelihood 

function is extremely crucial for GP modelling for a very large training dataset (of size 𝑁, say). 

Though there are several interesting methodological contributions, we briefly discuss a few very 

popular ones. 

 

Stein et al. (2004) proposed an approach to break down the joint multivariate normal 

density into a product of conditional densities that significantly reduces the computational time. 

Furrer et al. (2006) and Kaufman et al. (2011) suggested using “tapering” in the correlation 

matrices via a compactly supported kernel (see Section 3.4), so that the sparse matrix algorithms 

can be better utilised for computational savings. 

 

Another line of approach is to replace one big common GP model on a very large dataset 
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(say 𝑁 ) with several local models based on small datasets of (say) size 𝑛  (≪ 𝑁 ) each for 

approximating the predicted response at an arbitrary 𝐱0 in the input space. Let 𝐗 be the large 

training set of 𝑁 points, and  𝐗(𝑛)(𝐱0) or  𝐗(𝑛) (in short) denote the desired subset of  which 

defines the 𝑛-point neighborhood of 𝐱0  contained in 𝐗. We briefly discuss two methods of 

constructing this neighborhood set  𝐗(𝑛). The first one, called as the naive approach, assumes the 

elements of the neighborhood set 𝐗(𝑛)  by finding 𝑛 nearest neighbors of 𝐱0  in 𝐗 as per the 

Euclidean distance in the k-nearest neighbor method. The emulator obtained via fitting a GP model 

to this local set of points is referred to as 𝑘-nearest neighbor GP model (in short, knnGP). Though, 

knnGP is computationally much cheaper than the full GP model (in short, fullGP) trained on 𝑁 

points, its prediction accuracy may not be satisfactory. Emery (2009) finds the neighborhood set 

𝐗(𝑛)(𝐱0) (for every 𝐱0) using a greedy approach. Gramacy and Apley (2015) further improved 

the prediction accuracy by using a sequential greedy algorithm and an optimality criterion for 

finding a non-trivial local neighborhood set (see Figure 8 for an illustration). This method is also 

tailored for computation on modern day multi-processing, multi-threaded computers. 

 

  
Figure 8 Local neighbourhood selection as per the k-nearest neighbour method (blue squares) and the greedy approach (red 
triangle) by Gramacy and Apley (2015) for prediction at the location marked by black plus. 

 
5.2 Computational Efficiency 

 

In recent times, researchers have started focussing on the development of algorithms that are 

computationally efficient, can easily be parallelized, and in particular suitable for large data sets. 

Many of the software packages that are now being released, come with MPI, Open MP and CUDA 

code components, which have the option of running codes in parallel and/or use the built-in GPU 

components for faster processing. 
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Despite using sophisticated methodologies developed for handling big data, fitting GP 

models for big data can often be computationally expensive. Franey et al. (2012) demonstrate how 

Graphics Processing Units (GPU) give us more computing power than Central Processing Units 

(CPU) for standard GP models. For a quick reference, Table 1 presents a comparison of 

computation time for the standard CPU computing versus CPU+GPU implementation. Note that 

the results were obtained on a naive high performance computing (HPC) supported desktop (that 

a student could afford in 2011, the time of research), and now a much more significant 

improvement can be recoded on the latest HPC platform. 

 
Table 1 Performance comparison of standard GP model fits. The outputs are generated via Hartman-6 function, and the inputs 
are random maximin Latin hypercube designs in [0,1]^6. The results are averaged over 10 simulations, except the last row of 
CPU implementation (denoted by ∗), which is based on only 1 simulation. See Franey et al. (2012) for details. 

CPU Implementation 

𝑛 Time (𝑠) −2𝑙𝑜𝑔𝐿𝜃 �̂� �̂�𝑧
2 SSPE 

64 32.32 125.94 0.1771 0.1403 77.4160 

256 514.43 610.25 0.1105 0.1164 27.4311 

1024 13325.86 2491.97 0.0609 0.0970 5.6504 

4064 *161925.05 *8044.80 *0.0485 *0.0824 *0.5320 

CPU Implementation 

𝑛 Time (𝑠) −2𝑙𝑜𝑔𝐿𝜃 �̂� �̂�𝑧
2 SSPE 

64 9.45 103.70 0.1238 0.2989 91.7860 

256 16.58 547.10 0.1397 0.1746 31.4641 

1024 96.19 2665.58 0.1192 0.1390 4.3850 

4064 1059.71 8698.28 0.0803 0.0700 0.5314 

 

In summary, parallel-running GPUs when combined with CPUs are far more effective on 

per-dollar basis than most multi-core CPUs (alone). Gramacy et al. (2014) and Liu et al. (2018) 

investigated it further and developed more advanced methodologies and implementation 

algorithms particularly advantageous for large data sets. New R libraries like laGP (Gramacy, 

2015) and DynamicGP (Zhang et al., 2018a) takes the advantage of multi-core processors and run 

specific tasks in parallel. One can also specify the number of threads to be assigned for a particular 

code in these packages. 

 

HPC on Microsoft R has recently been gaining popularity as well. Microsoft R is an 

enhanced version of R which supports multithreading for calculations. The original R was 

designed to use single thread for computations and this modified version adds Intel Math Kernel 

Library (IMKL) which significantly decreases computational expenses. Microsoft R functions 

exactly like R; so there is no change required in the code or library. Matrix operations in particular 

are immensely benefited by using multithreading approach. The benchmark reports can be 

accessed at https://mran.microsoft.com/documents/rro/multithread. To reproduce the results and 

better understanding, one can see GitHub repository: https://github.com/andrie/version.compare. 

https://mran.microsoft.com/documents/rro/multithread
https://github.com/andrie/version.compare
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6. DATA ANALYSIS GOALS 

 
There are several popular pre-specified objectives of running computer simulators and data 

analysis. For instance, (a) the overall understanding of the entire simulator response surface, (b) 

the estimation of a predetermined feature of interest, such as, the global minimum, a contour (also 

referred to as the inverse solution), a quantile, etc. (c) the calibration of the simulator itself, and 

(d) identification of important input variables. 

 

A major portion of computer experiment literature emphasize on the “design of computer 

experiments", which refers to the technique of choosing a set of input combinations (𝑥’s) for 

running the computer simulator. For objective (a) listed above, several good designs have been 

developed. One of the most popular jargon in this section of the literature is Latin hypercube based 

designs with space-filling properties like maximin interpoint distance, minimum pairwise-

coordinate correlation, and so on. Given that the goal is to explore the overall simulator response 

surface, the most common form of analysis is the “sensitivity analysis" - which sort of overlaps 

with objective (d). 

 

Over the last two decades, many researchers in this area have focussed on developing 

innovative methods and algorithms for estimating process optimum. However, this was under the 

assumption that the computer simulator is computationally expensive to run, and subsequently, the 

training data is not large enough to be classified as BIG data. Though the size of the training data 

can sometimes be in thousands, the corresponding input dimension is too large (e.g., 20) to prevent 

thorough exploration of the input space using 1000 points. That is, the budget for the total number 

of simulator runs (say 𝑛) is pre-fixed and too small (with respect to the input dimension 𝑑) to use 

traditional optimization techniques, which led to the need for a new method for global optimization 

in computer experiments. 

 

Jones et al. (1998) proposed an efficient sequential design scheme for finding the global 

minimum. The algorithm starts with choosing an initial design of size 𝑛0(≪ 𝑛) and then selects 

the remaining 𝑛 − 𝑛0 follow-up points sequentially one at-a-time by maximizing a merit-based 

criterion called the expected improvement (EI). In Jones et al. (1998), the EI criterion is simply the 

expectation of the improvement function,  

 

 𝐼(𝑥) = max{𝑓𝑚𝑖𝑛
(𝑘)

− 𝑦(𝑥),0}, 

 

with respect to the predictive distribution of 𝑦(𝑥) given the observed data on 𝑛0 + 𝑘 points, 

where 𝑓𝑚𝑖𝑛
(𝑘)

 is the running estimate of the global minimum, and 𝑦(𝑥) is the unobserved response 

at the input 𝑥. This approach gained significant popularity because the EI criterion facilitated a 

tradeoff between the local exploitation and the global exploration, i.e., the algorithm made sure 
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that the global minimum was found and did not get stuck in the local optimum. Since then a 

plethora of slightly different EI criteria have been proposed for the global minimum (see, for 

example, Schonlau et al. (1998) and Santner et al. (2003)). 

 

Ranjan et al. (2008) extended the EI approach for estimating a pre-specified contour (also 

popularly referred to as the inverse solution) from an expensive to evaluate deterministic computer 

simulator. The notion of contour estimation was further adopted for quantile estimation and 

estimating the tail probability of failure (see Bingham et al. (2014) for a review). The complexity 

of the estimation of an inverse solution increased substantially when the computer simulator 

returns a time-series response instead of a scalar. Ranjan et al. (2016) tried to use a standard GP 

model based EI approach via scalarization technique for solving this inverse problem. Vernon et 

al. (2010b) proposed a history matching algorithm for this purpose, and recently, Zhang et al. 

(2018c) further extended the EI approach under the SVD-based GP models for dynamic simulator 

response. 

 

7. REAL-LIFE COMPUTER MODELS 

 
The applications of real-life computer models range over a wide spectrum of discipline, from 

behavioural models to the simulation of a nuclear reaction. In this section, we present brief 

descriptions of a few real-life simulators.  

 

TDB model: The underlying objective is to gain a thorough understanding of the population 

growth of a pest called the European red mites (ERM) or Panonychus ulmi (Koch). ERM infest on 

apple leaves, resulting in poor yields, and hence a concern for apple farmers in the Annapolis 

Valley, NS, Canada. Franklin (2014) developed a mathematical-biological model based on 

predator-prey dynamics called the Two-Delay Blowfly (TDB) model, which consists of eleven 

parameters treated as the inputs to the model, and produces time-series outputs that characterize 

the ERM population growth. Ranjan et al. (2016) did some preliminary research on the calibration 

of this simulator. Recently, Zhang et al. (2018b) built a dynamic GP model for analyzing BIG data 

obtained from the TDB model. Zhang et al. (2018c) further extended the work to find the optimal 

set of inputs of the TDB model that gives a good approximation to a pre-specified target (e.g., the 

field data). The intent behind this inverse problem was to calibrate the TDB model to produce 

realistic outputs closer to the reality.  

 

Tidal power model: The Bay of Fundy, located between New Brunswick and Nova Scotia, 

Canada, is world famous for its high tides. Among others, Karsten et al. (2008) suggested 

harnessing this green / renewable tidal energy by installing a host of in-stream tidal turbines. 

However, the cost of building a turbine and installing it in the Bay of Fundy is extremely high (in 

millions of dollars). Thus, it is desirable to minimise the number of turbines to harness the 

maximum extractable total power. However, a physical experiment to find the optimal locations 

of these tidal turbines is infeasible due to the cost constraint. Karsten et al. (2008) developed a 
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version of the finite volume community ocean model (Greenberg, 1979), for preliminary analysis 

and experimentation in the Minas Passage of the Bay of Fundy.  Ranjan et al. (2011) used this 

computer model for finding the optimal location of one tidal turbine by maximising the power 

function. Chipman et al. (2012) used non-stationary surrogate model based optimization strategy 

for finding the optimal locations of several turbine fences for a case study by Karsten et al. (2008). 

 

SWAT model: Soil and Water Assessment Tool (SWAT) model is an internationally recognised 

computer model which simulates runoff from watershed areas based on climate variables, soil 

types, elevation and land use data (Arnold et al, 1994). Bhattacharjee et al. (2017) used a modified 

history matching algorithm built upon the GP-based surrogate for calibrating this model with 

respect to the Middle Oconee River (Georgia, USA) data. The idea of history matching was 

popularised by Vernon et al. (2010, 2014) when calibrating a Galaxy formation simulator called 

GALFORM. 

 

MRST model: Finding the optimal drilling locations for production and injection wells in an oil 

reservoir is of utmost importance (see Onwunalu and Durlofsky, 2010). Butler et al. (2014) used 

a Matlab Reservoir Simulator (MRST) (Lie et al., 2012) to generate the anticipated net present 

value (NPV) of the produced oil for a well to be drilled at a particular location. The goal here was 

to determine the configuration of wells that yields the best NPV. 

 

8. CONCLUSION AND FUTURE DIRECTIONS 

 

In this chapter, we have reviewed the Machine Learning and Statistics literature on design, analysis 

and modelling of data arising from computer simulation models. Recall that computer models are 

often used as cheaper alternatives for complex physical phenomena, however, simulators can also 

be computationally too expensive for thorough experimentation, and for which, statistical models 

are used to emulate the simulator output. For the last two decades, realisations of Gaussian process 

(GP) models are used for this emulation. Section 2 of this chapter presented a brief review of the 

most basic GP regression model. This non-linear semi-parametric regression model may appear to 

be straightforward, however, the numerical issues in fitting this model are somewhat involved. In 

Section 3, we have briefly reviewed the major computational concerns, i.e., the near-singularity of 

the correlation matrix, efficient matrix decomposition methods, choice of correlation kernels, and 

the reparametrization of the correlation length parameters. Section 4 summarized a variety of 

popular GP-based surrogates under the generalised setup such as non-stationarity, dynamic 

response model, and stochastic simulators. The treatment of BIG data obtained from computer 

models was briefly discussed in Section 5, and Section 6 reviewed a few popular analysis goals of 

such computer experiments. Finally, Section 7 presented a brief description of a few real-life 

computer models. 

 

With respect to the future research directions, the relentless growth in the computing power 
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demands for more advanced methodologies and efficient algorithms. Furthermore, not all 

methodologies developed thus far are full proof in every aspect. For instance, the nugget based 

approach had been developed only when the GP model was to be built for the overall good fit. If 

the objective is to estimate a pre-specified feature of interest like the global optimum, then the 

proposed lower bound of the nugget would not work, and is still an open research problem. On the 

other hand, the power-exponential correlation with 𝒑𝒌 < 𝟐 (say 1.95) substantially reduces the 

chances of near-singularity, however, does not completely resolves it. The development of new 

methodologies and analysis for dynamic GP models is still at the early stage, and much further 

work have to be done, e.g., the construction of optimal design for different analysis objectives. 

Under the umbrella of BIG data, most of the innovative work thus far focus on tweaking the 

existing methodologies, for example, via conditional likelihood or sparse computations. New 

innovative methodologies and algorithms (e.g., for building specific surrogate model and 

constructing optimal design) tailored towards BIG data are still open research problems.  
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