
1

Statistical Modelling and Analysis of the

Computer-Simulated Datasets

M. Harshvardhan

Indian Institute of Management Indore, India

Pritam Ranjan

Indian Institute of Management Indore, India

ABSTRACT

Over the last two decades, the science has come a long way from relying on only physical

experiments and observations to experimentation using computer simulators. This chapter

focusses on the modelling and analysis of data arising from computer simulators. It turns out that

traditional statistical metamodels are often not very useful for analyzing such datasets. For

deterministic computer simulators, the realizations of Gaussian Process (GP) models are

commonly used for fitting a surrogate statistical metamodel of the simulator output. The chapter

starts with a quick review of the standard GP based statistical surrogate model. The chapter also

emphasizes on the numerical instability due to near-singularity of the spatial correlation structure

in the GP model fitting process. The authors also present a few generalizations of the GP model,

reviews methods and algorithms specifically developed for analyzing big data obtained from

computer model runs, and reviews the popular analysis goals of such computer experiments. A

few real-life computer simulators are also briefly outlined here.

Keywords: Big Data, Comptuer Experiments, Dynamic Computer Models, Gaussian Process

Regression Models, Ill-conditioned Matrix, Near-singularity, Non-stationary Process, Surrogates.

1. INTRODUCTION

In early days, when the computers were not readily accessible to common people, statisticians and

data analysts focussed on the development of innovative methodologies that were efficient for

analyzing small datasets. Over the last two decades, we have come a long way from relying on

only physical experiments and observations to experimentation using computer simulation models,

commonly referred to as the computer simulators or computer models. These simulators are

software implementation of the real-world processes, imitated based on the comprehensive

2

understanding on the underlying phenomena. The applications range from simulating

socioeconomic behaviour, impact due to a car crash, manufacturing a compound for drug

discovery, climate and weather forecasting, population growth of certain pest species,

cosmological phenomena like dark energy and universe expansion, emulation of tidal flow for

harnessing renewable energy, the simulation of a nuclear reactions, and so on. Given the easier

access to high performance computing power such as cloud computing and cluster grids, computer

model data is now a reality in everyday life.

In this chapter, we focus on the modelling and analysis of data sets arising from such

computer simulators. Similar to the physical experiments setup, the data obtained from the

computer simulator runs have to be modelled and analysed for a deeper understanding of the

underlying process. However, traditional statistical metamodels are often not very useful for

analyzing such datasets. This is because, many a time, these computer models are deterministic in

nature, that is, the repeated runs of such a computer simulator with a fixed input settings yield the

same output / response. In other words, there is no replication error for the deterministic computer

simulators. Recall that in the traditional statistical models, such as regression, the main driving

force for model fitting and inference part of methodology is the distribution of replication errors.

For deterministic computer simulators, the realizations of Gaussian Process (GP) models,

trained by the observed simulator data, are commonly used for fitting a surrogate statistical

metamodel of the simulator output. This is particularly crucial if the simulator is expensive to run,

which is the case for many complex real-life phenomena. The notion of GP models gained

popularity in late 1990 and early 2000 (e.g., Santner et al. (2003); Rasmussen and Williams (2006);

Fang et al. (2005)), though it was first proposed in the seminal paper of Sacks et al. (1989). Section

2 of the chapter presents a quick review of the standard GP based statistical surrogate model. We

will also briefly discuss the implementation procedure using both the maximum likelihood method

and the Bayesian approach.

Almost all published research articles and books focus on the new methodologies and

algorithms that can be used for analyzing the computer simulator data, and not on the small

nuances related to the actual implementation which is extremely useful from a practitioners’

standpoint. This chapter emphasizes on such computational issues. In particular, Section 3 of the

chapter discusses the numerical instability due to near-singularity or ill-conditioning of the spatial

correlation structure which is the key building block behind the flexibility of the GP-based

surrogate model. In practice, the majority of researchers simply use a numerical fix to overcome

this issue, but this inadvertently compromises with other aspects of the model assumptions. We

present an empirical study to compare different current practices to address this ill-conditioning

problem. We also discuss the best coding practices in the implementation of such model fitting

exercise, for instance, which of the matrix decomposition method, LU / QR / SVD / Cholesky, is

recommended from an accuracy and time efficiency perspective.

3

Given the revolution in the computing power, it is now easy to collect and process data sets

that are spatio-temporal and functional in nature. Dynamic computer models, i.e. the simulator

which returns time-series response (see Zhang et al. (2018b)), is a current hot topic of research in

applied statistics and computer experiments. Section 4 of the chapter reviews several

generalizations of the GP model that accounts for multiple sources of uncertainty in the simulation

model, non-stationarity of the underlying processes, and dynamic nature of such computer

simulator outputs.

With the advent of inexpensive high performance computing facilities on cloud servers and

different grids, a plethora of big data is now available in the public domain. The standard

methodologies and algorithms are typically not very efficient in analyzing such datasets. Section

5 of the chapter reviews methods and algorithms specifically developed for analyzing big data

obtained from computer model runs. Some of the approaches are methodolgoical in nature, and

use sparse matrix computation and localized model approximation based ideas to efficiently build

the statistical surrogate, whereas others emphasize on the clever use of parallelization on CPUs

and graphical processing units (GPUs) for handling the big data.

Section 6 of the chapter reviews the popular analysis goals of such computer experiments.

For instance, Jones et al. (1998) proposed an innovative merit based criterion called the expected

improvement for the process optimization; Linkletter et al. (2006) developed a variable screening

approach for the identification of important inputs to the computer simulator and subsequently

ignoring the non-important ones; Vernon et al. (2010), Pratola et al. (2013) and Ranjan et al. (2016)

discussed the calibration of computer simulators to ensure the generation of realistic outputs.

Finally, Section 7 presents brief outlines of a few real-life computer models.

Over the past decade or so, a few open source software (mostly in R) have been published

which are becoming increasingly popular among the researchers and practitioners, for instance,

GPfit (MacDonald et al., 2015), mlegp (Dancik and Dorman, 2008), TGP (Gramacy, 2007),

DiceKriging (Roustant et al., 2012), laGP (Gramacy et al., 2016) and DynamicGP (Zhang et al.,

2018a). In this chapter, we use several test function based computer simulators and real-life

applications to illustrate the concepts and methodologies via these packages. We also provide code

snippets of R to help understand how to apply use them in your research endeavours.

2. GAUSSIAN PROCESS MODEL

A stochastic process is a collection of random variables indexed by time or space. A Gaussian

process is commonly used in statistical modelling because of its nice distributional properties and

closed form expressions of moments and other summary statistics. In notation, {𝑧(𝑥), 𝑥 ∈ [0,1]𝑑},

in short, 𝑧(𝑥)~𝐺𝑃(0, 𝜎𝑧
2𝑅) with 𝐸(𝑧(𝑥)) = 0 , 𝑉𝑎𝑟(𝑧(𝑥)) = 𝜎𝑧

2 , and 𝐶𝑜𝑣(𝑧(𝑥𝑖), 𝑧(𝑥𝑗)) =

4

𝜎𝑧
2𝑅(𝑥𝑖, 𝑥𝑗) where 𝑅 is a positive definite correlation function. Then, any finite subset of

variables {𝑧(𝑥1), 𝑧(𝑥2), . . . , 𝑧(𝑥𝑛)}, for 𝑛 ≥ 1, jointly follows multivariate normal distribution.

In conventional regression models, we set 𝑦𝑖 = 𝑓(𝑥𝑖, 𝛽) + 𝜀𝑖 , where 𝜀𝑖 ’s are i.i.d.

𝑁(0, 𝜎2). Though the regression model can be very flexible if we choose the 𝑓(𝑥𝑖, 𝛽) carefully,

this is not suitable for emulating the deterministic computer model outputs, as there is no

replication error. In GP model (also sometimes referred to as the GP regression model), we aim to

find a surrogate that is an interpolator of all the observed training data, that is, the fitted surface

passes through all original (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, . . . , 𝑛. In between the training points, the smoothness

and curvature of the fitted surrogate is guided by the correlation structure 𝑅(⋅,⋅). The GP model is

formally presented in the next subsection.

2.1 Model Statement

Let the 𝑖-th 𝑑-dimensional input and 1-dimensional output of the computer simulator be denoted

by 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑) and 𝑦𝑖 = 𝑦(𝑥𝑖), respectively. Suppose the set of all 𝑛 training data are

held together in the design 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛} and the output vector 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛)′. Then,

the GP model is written as

 𝑦𝑖 = 𝜇 + 𝑧(𝑥𝑖), 𝑖 = 1,2, … , 𝑛, (1)

where 𝜇 is the overall mean and 𝑧(𝑥)~𝐺𝑃(0, 𝜎𝑧
2𝑅) . Subsequently, 𝑌 follows multivariate

normal distribution with mean 1𝑛𝜇 and variance-covariance matrix Σ = 𝜎𝑧
2𝑅𝑛, where 1𝑛 is an

𝑛 × 1 vector of all 1’s, and 𝑅𝑛 is an 𝑛 × 𝑛 correlation matrix with (𝑖, 𝑗)-th element given by

𝑅(𝑥𝑖, 𝑥𝑗) (see Sacks et al. (1989); Santner et al. (2003) for more details).

The most crucial component of this GP model is the correlation structure, which dictates

the ‘smoothness’ of the interpolator that passes through the observations. In a multidimensional

scenario, it tells us how wobbly and differentiable the fitted surrogate is. By definition, any positive

definite correlation structure would suffice, but the most popular choice is the Gaussian

correlation. In Machine Learning and Geostatistics literature, Gaussian correlation is also referred

to as the radial basis function. Gaussian correlation is a special case (with 𝑝𝑘 = 2) of the power-

exponential correlation given by

 𝑅(𝑥𝑖, 𝑥𝑗) = ∏𝑑
𝑘=1 exp{−𝜃𝑘|𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑝𝑘}, (2)

where 𝜃𝑘 and 𝑝𝑘 controls the wobbliness of the surrogate in the 𝑘-th coordinate.

The model described by (1) and (2) is typically fitted by either maximizing the likelihood

or via Bayesian algorithms like Markov chain Monte Carlo (MCMC). As a result, the predicted

response �̂�(𝑥0) for an arbitrary input 𝑥0 can be obtained as a conditional expectation from the

5

following (𝑛 + 1)-dimensional multivariate normal distribution:

 (
𝑦(𝑥0)
𝑌

) = 𝑁 ((
𝜇
𝜇1𝑛

) , (
𝜎𝑧

2 𝜎𝑧
2𝑟′(𝑥0)

𝜎𝑧
2𝑟(𝑥0) 𝜎𝑧

2𝑅𝑛

)), (3)

where 𝑟(𝑥0) = [𝑐𝑜𝑟𝑟(𝑥1, 𝑥0), … , 𝑐𝑜𝑟𝑟(𝑥𝑛, 𝑥0)]′. The predicted response �̂�(𝑥0), which is also the

best linear unbiased predictor (BLUP), is the same as the conditional mean:

 𝐸(𝑦(𝑥0)|𝑌) = 𝜇 + 𝑟(𝑥0)′𝑅𝑛
−1(𝑌 − 1𝑛𝜇), (4)

and the associate prediction uncertainty estimate (denoted by 𝑠2(𝑥0)) can be quantified by the

conditional variance:

 𝑉𝑎𝑟(𝑦(𝑥0)|𝑌) = 𝜎𝑧
2(1 − 𝑟′(𝑥0)𝑅𝑛

−1𝑟(𝑥0)). (5)

In practice, the parameters 𝜇, 𝜎 and 𝜃 = (𝜃1, . . . , 𝜃𝑑) are replaced by their estimates

(maximum likelihood estimates or posterior means in MCMC) in (4) and (5).

2.2 Implementation Details

The key aspects of the implementation here is to efficiently maximize the likelihood and evaluate

the predicted mean response and associated uncertainty measure. For this GP model, the likelihood

is simply the joint probability density function of the multivariate normal distribution of 𝑌, i.e.,

 −2log(𝐿) ∝ log(|𝑅𝑛|) + 𝑛log(𝜎𝑧
2) +

(𝑌−1𝑛𝜇)′𝑅𝑛
−1(𝑌−1𝑛𝜇)

𝜎𝑧
2 , (6)

where |𝑅𝑛| is the determinant of the 𝑛 × 𝑛 correlation matrix 𝑅𝑛.

Minimizing −2log(𝐿) gives closed form expressions for �̂� and �̂�𝑧
2 as

 �̂� = (1𝑛′𝑅𝑛
−11𝑛)−1(1𝑛′𝑅𝑛

−1𝑌), (7)

and

 �̂�𝑧
2 =

(𝑌−1𝑛�̂�)′𝑅𝑛
−1(𝑌−1𝑛�̂�)

𝑛
, (8)

where 𝑅𝑛 is a function of unknown 𝜃 = (𝜃1, . . . , 𝜃𝑑) . Finding good estimates of the 𝑑 -

dimensional correlation hyperparameter vector 𝜃 is not easy. It is common to use numerical

optimization techniques like multi-start Gauss-Newton type methods or evolutionary algorithms

like particle swarm method and genetic algorithms to find 𝜃.

6

For the convenience of researchers and practitioners in this area, several R packages have

been developed that provide easy implementation of fitting this GP model, for example, TGP

(Gramacy, 2007), mlegp (Dancik and Dorman, 2008), DiceKriging (Roustant et al., 2012) and

GPfit (MacDonald et al., 2015).

In this section, we briefly illustrate the usage of GPfit (MacDonald et al., 2015) for fitting

a GP model to a simulated data set. Suppose the simulator output is generated by a one-dimensional

test function 𝑓(𝑥) = log(𝑥 + 0.1) + sin(5𝜋𝑥), and 𝑋 = {𝑥1, . . . , 𝑥10} is a randomly generated

training set as per the space-filling Latin hypercube design. Then the GP model can be fitted using

the following code:

GPmodel = GPfit::GP_fit(X, Y, corr = list(type="exponential", power=2))

The GPfit object GPmodel contains the parameter estimates, which can be further passed

on for generating the predictions along with uncertainty estimates at a test set. Figure 1 shows the

fitted surrogate along with the true response.

Figure 1 The blue dashed curve is the mean prediction obtained using 𝐺𝑃𝑓𝑖𝑡, the black solid curve is the true simulator response
curve 𝑓(𝑥) = 𝑙𝑜𝑔(𝑥 + 0.1) + 𝑠𝑖𝑛(5𝜋𝑥), the black solid dots are the training data points, and the shaded area represent the
uncertainty quantification via �̂�(𝑥) ± 2𝑠(𝑥).

7

In GPfit package, the estimate of 𝜃 is obtained by minimizing the deviance (−2log(𝐿𝑝),

where 𝐿𝑝 is the profiled likelihood obtained after substituting �̂� and �̂�𝑧
2) using a multi-start

gradient based search (L-BFGS-B) algorithm. As a side note, they use a slightly different

parametrization, i.e., 𝜃𝑘 = 10𝛽𝑘 , and then find optimal 𝛽 = (𝛽1, . . . , 𝛽𝑑) (see Section 3.4 for

more discussion on reparametrization of 𝑅(𝑥𝑖, 𝑥𝑗)). The starting points of L-BFGS-B are selected

using the 𝑘-means clustering algorithm on a large space-filling design over the search space, after

discarding 𝛽 vectors with high deviance. The control parameter is a vector of three tunable

parameters used in the deviance optimization algorithm. The default values correspond to choosing

2𝑑 clusters based on 80𝑑 best points (smallest deviance) from a 200𝑑 - point random space-

filling design in 𝛽 -space. One can enhance the robustness of the optimal 𝛽 estimates by

increasing the arguments of control in GP_fit, however, this is a computationally expensive, with

𝑂(𝑛3) complexity, where 𝑛 is the size of the training data. Thus, one should balance between the

computational cost and the robustness of likelihood optimization. For details see MacDonald et al.

(2015).

3. COMPUTATIONAL ISSUES IN FITTING GP MODELS

Though fitting a GP model to the training data and prediction on a test set may seem like

straightforward tasks, there are several issues like numerical instability, prediction accuracy, biases

due to miss-specified model, and some concern due to the heavy computational cost, particularly

when dealing with big data. In this section, we review a few such outstanding issues and popular

approaches to address them.

3.1 Matrix Decomposition in Likelihood Evaluation

Different components of the GP model, including the likelihood (equivalently, the deviance

expression), estimates of 𝜇 and 𝜎𝑧
2, the predicted mean response and the uncertainty estimate (as

shown in (4) - (8)), contain two computationally expensive terms, the determinant of 𝑅𝑛 and the

inverse of 𝑅𝑛. For finding optimal 𝜃 (or equivalently, 𝛽, as in GPfit), these expressions have to

be evaluated hundreds to thousands of times for different realizations of 𝜃. If the size of the

training data, 𝑛, is small, numerous evaluations of |𝑅𝑛| and 𝑅𝑛
−1 by any method is not a concern

from computational cost standpoint, however, for large 𝑛 , fast evaluations of |𝑅𝑛| and 𝑅𝑛
−1

become crucial.

It is common to use matrix decomposition methods like LU, Cholesky, QR and SVD, for

efficient computation of determinants and inverses of 𝑅𝑛, and terms like 𝑅𝑛
−1𝑤, for some 𝑛 × 1

vector 𝑤. It turns out that these decomposition methods have different computational cost, and

more importantly, exhibit different precision as well. In this section, we present a simulation study

based comparison of these matrix decomposition methods for Gaussian correlation (2). The

8

objective is to choose the right matrix decomposition method while implementing the GP model

procedure.

The results are averaged over 1000 simulations. For each replication, we randomly

generate 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} using a space-filling Latin hypercube design over [0,1]𝑑 and 𝜃 ∈

(0, ∞)𝑑, and then evaluate 𝑅𝑛 as in (2). Subsequently, we perform the decomposition and then

obtain the reconstituted matrix. For instance, for LU decomposition, we obtain the triangular

matrices 𝐿 and 𝑈 via lu(𝑅𝑛), and then find 𝑅𝑛
∗ = 𝐿𝑈. In theory, 𝑅𝑛

∗ = 𝑅𝑛, but in practice, they

can be somewhat different. Both the empirical simulation study and the theoretical complexity

measured in terms of big O, show that Cholesky and SVD have much greater accuracy and are

computationally cheaper as compared to LU and QR.

Note that Cholesky decomposition method uses two sets of linear solves for computing

𝑅𝑛
−1𝑤. That is, if 𝑅𝑛 = 𝐿𝐿𝑇, then 𝑅𝑛

−1𝑤 = 𝑠𝑜𝑙𝑣𝑒(𝐿𝑇 , 𝑠𝑜𝑙𝑣𝑒(𝐿, 𝑤)). Whereas, the SVD method

finds 𝑅𝑛
−1 by inverting the singular values as

 𝑅𝑛
−1 = ∑𝑛

𝑖=1 𝑢𝑖𝑣𝑖
𝑇/𝑑𝑖 ,

where 𝑅𝑛 = 𝑈𝐷𝑉𝑇 with 𝑈 = [𝑢1, . . . , 𝑢𝑛], 𝑉 = [𝑣1, . . . , 𝑣𝑛] and 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, . . . , 𝑑𝑛). It turns

out that for applications with large 𝑛 and small input dimension 𝑑 , both of these matrix

decomposition methods suffer from numerical instability due to ill-conditioning of 𝑅𝑛. In this

chapter, we only focus on Cholesky and SVD as the other decomposition methods are less efficient

and inaccurate.

3.2 Near-singularity of Correlation Matrix

Recall that an 𝑛 × 𝑛 matrix is said to be singular if at least one of its rows (or columns) is linearly

dependent on the rest of rows (or columns), i.e., the matrix does not have full row (or column)

rank, i.e., the determinant is zero. However in a near-singular matrix, the determinant is not exactly

equal to zero but very small. One popular method of quantifying the near-singularity of 𝑅𝑛 is via

its condition number defined by, 𝜅(𝑅𝑛) =∥ 𝑅𝑛
−1 ∥⋅∥ 𝑅𝑛 ∥= 𝜆𝑛/𝜆1, where ∥⋅∥ is the 𝐿2 norm of

the matrix, and 𝜆𝑖 is the 𝑖-th smallest eigen value of 𝑅𝑛. An 𝑛 × 𝑛 matrix 𝑅𝑛 is said to be near-

singular (or ill-conditioned) if 𝜅(𝑅𝑛) is large. For Gaussian correlation, the near-singularity

occurs when ∑𝑑
𝑘=1 𝜃𝑘|𝑥𝑖𝑘 − 𝑥𝑗𝑘|2 ≈ 0, which implies either the two data points 𝑥𝑖 and 𝑥𝑗 are

close to each other and/or 𝜃𝑘’s are close to zero. This further implies that the condition number is

directly proportional to the sample size 𝑛 and inversely proportional to 𝑑 and 𝜃. In other words,

the larger the training data size, it is more likely to run into near-singularity, whereas if the input

dimension and/or 𝜃 are large, it is less likely to run into near-singularity.

From an implementation standpoint, if the condition number is larger than say 1/𝜀𝑀 ,

9

where 𝜀𝑀 is the machine precision (𝜀𝑀=2.220446e-16 for our desktop computer), the determinant

of 𝑅𝑛 would be too close to zero, and the linear solves using 𝑅𝑛 become too sensitive and

unreliable, if at all obtainable. If 𝜅(𝑅𝑛) > 1/𝜀𝑀, Cholesky decomposition of 𝑅𝑛 would crash,

rendering the method infeasible. However, one can use SVD approach and approximates 𝑅𝑛
−1 as

 𝑅𝑛
−1 ≈ ∑𝑛

𝑖=1 𝑢𝑖𝑣𝑖
𝑇/𝑑𝑖 ⋅ 𝐼(𝑑𝑖 > 𝜂),

where 𝜂 is a pre-specified threshold that determines a cut-off for not using very small singular

values in approximating the inverse of 𝑅𝑛. For details, see Jones et al. (1998) and Booker et al.

(1999). It turns out that the SVD based approach is very sensitive with respect to the choice of 𝜂.

That is, a large value of 𝜂 would make the approximated 𝑅𝑛
−1 too far from the true (unobservable)

𝑅𝑛
−1, whereas a small value of 𝜂 would make approximated 𝑅𝑛

−1 unreliable due to the inclusion

of very large 1/𝑑𝑖.

A popular technique to resolve this numerical issue is to use a “nugget" (or also referred to

as a “jitter") term 𝛿 in the model by replacing 𝑅𝑛
−1 with 𝑅𝑛,𝛿

−1 , where 𝑅𝑛,𝛿 = 𝑅𝑛 + 𝛿𝐼𝑛 (Neal,

1997). This method works because 𝜅(𝑅𝑛,𝛿) = (𝜆𝑛 + 𝛿)/(𝜆1 + 𝛿) would be much smaller than

𝜅(𝑅𝑛). Similar to the SVD based approximation, here also one needs to find 𝛿, but interestingly,

this nugget based approach is less sensitive to the choice to 𝛿 as compared to selecting appropriate

𝜂 in the SVD method. Gramacy and Lee (2012) suggests estimating 𝛿 along with other model

parameters in a Bayesian framework, however, the search space for 𝛿 has to be carefully chosen

so that the lower limit is large enough to ensure well-conditioned 𝑅𝑛,𝛿. To this effect, Ranjan et

al. (2011) developed a lower-bound on 𝛿 which suffices well-behaved and accurate

approximation of 𝑅𝑛.

If we choose 𝜂, 𝛿 > 0, the resultant mean prediction function is not an interpolator. Thus,

both the nugget and SVD based approaches lead to methodological consequences which may not

be desirable for a deterministic simulator. Ranjan et al. (2011) proposed an iterative scheme that

uses the lower bound of nugget to start with for well-behaved 𝑅𝑛,𝛿 and then the iterative

regularization makes the predictor converge to the interpolator. The following R code snippet

illustrates the usage of GPfit package to specify the number of iteration (say, 𝑀 = 5) in this

iterative procedure:

GPprediction = GPfit::predict.GP(GPmodel, xnew, M=5)

Of course, one can argue on a philosophical ground that none of the realistic computer

model is deterministic, and some sort of uncertainties and biases are always present. Thus, one

must include a non-zero nugget term, and some amount of smoothing is a desirable feature for a

predicted surrogate. Even in such a case, if the nugget parameter is estimated using the maximum

likelihood method or a Bayesian approach (via MCMC), the lower limit of the search space for 𝛿

10

must be large enough to ensure well-conditioned 𝑅𝑛,𝛿, for which the lower-bound of 𝛿 proposed

by Ranjan et al. (2011) can be used.

Alternatively, one can consider approximating 𝑅𝑛
−1 by 𝑅𝑛,𝛿

∗−1 = (𝑅 + 𝛿𝐽)−1, where 𝐽 is an

𝑛 × 𝑛 matrix of all 1’s. A quick calculation reveals that the predicted surrogate similar to (4) - (5)

will be an interpolator, unlike the scenario when we used (𝑅 + 𝛿𝐼)−1 as an approximation of 𝑅−1.

However, a thorough investigation is required to compare the model properties between (𝑅 + 𝛿𝐼)

versus (𝑅 + 𝛿𝐽) approaches.

3.3 Reparameterisation of Correlation Functions

The estimation of the correlation hyperparameter 𝜃 = (𝜃1, . . . , 𝜃𝑑) is the most crucial part of the

GP model fitting procedure. Recall that the deviance function has to be minimized with respect to

𝜃 ∈ (0, ∞). For many applications, the deviance functions for such GP models are not easy to

minimize. As an example, Figure 2 shows the deviance function with respect to 𝜃 for the 1-

dimensional test function displayed in Figure 1. Since a large value of 𝜃 implies wigglier

surrogate, we do not expect the estimated 𝜃 to be too big here. As a result, the deviance is a non-

trivial function to minimize.

Figure 2 Deviance with respect to 𝜃 for the test function and data used in Figure 1. The left panel is the zoomed-in version of
the right panel near zero.

In the computer experiment literature, researchers have considered a variety of re-

parametrizations of this Gaussian correlation. In this section, we briefly discuss these

parametrizations and compare their suitability for easier optimization.

11

A popular alternative representation of the correlation function uses 𝜆𝑘 (= 1/𝜃𝑘), and

refers to it as a correlation length parameter (Santner et al., 2013). Thus, the correlation function

becomes:

 𝑅(𝑥𝑖, 𝑥𝑗) = exp{− ∑𝑑
𝑘=1 |𝑥𝑖𝑘 − 𝑥𝑗𝑘|2/𝜆𝑘},

where 𝜆𝑘 ∈ (0, ∞). Of course, this correlation length parameter has more intuitive interpretation,

and 𝜆𝑘 close to zero indicates low spatial correlation and large 𝜆𝑘 implies high correlation

between 𝑦(𝑥𝑖) and 𝑦(𝑥𝑗). However, as expected, this parameterization would not really ease of

the optmization of likelihood with respect to 𝜆𝑘.

Linkletter et al. (2006) replaced 𝜃𝑘 with −4log(𝜌𝑘) , i.e., the new correlation

hyperparameter, 𝜌𝑘 ∈ (0,1) . This parametrization gives slightly better interpretability, as 𝜌𝑘

close to 1 means smoother fit with highly correlated nearby responses, whereas 𝜌𝑘 close to zero

indicates spatially uncorrelated (i.e., very wiggly) surrogate fit. Unfortunately, this parametrization

does not help much in the optimization of likelihood with respect to 𝜌𝑘 . For the same 1 -

dimensional test function and data as used in Figure 2, the deviance surface with respect to 𝜌 is

equally difficult to optimize.

Figure 3 Deviance with respect to ρ for the test function and data in Figure 1.

Recently, MacDonald et al. (2015) suggested another parametrization using 𝛽𝑘 (=

log10(𝜃𝑘)). The main idea here is that the search for smooth fits correspond to negative 𝛽𝑘 values,

whereas, wigglier surrogates are represented by large positive 𝛽𝑘. Moreover, the search space is

12

now linearized, so the optimization would be lot easier. Figure 4 presents the likelihood function

with respect to 𝛽 , and clearly this is a better function to minimize as compared to other

parametrization presented above.

Figure 4 Deviance with respect to β for the test function and data in Figure 1.

It is important to note that the practitioners have the liberty to choose an alternative

correlation structure all together instead of Gaussian correlation. However, reparametrizations

discussed above can also be applied to another correlation structure.

3.4 Choice of Correlation Function

Historically, Gaussian correlation function or kernel is the most popular choice for defining spatial

correlation in many stochastic processes. The applications range from Geostatistics to Machine

Learning and Artificial Intelligence. The commonly used related terminologies are kriging and

radial basis kernel.

Recall that the Gaussian correlation is a special case of the power exponential correlation

function presented in (2). For real-life applications the power parameters 𝑝𝑘 ∈ [1,2], which can

also be estimated along with other model parameters. Assuming the other model parameters are

fixed, 𝑝𝑘 controls the smoothness (differentiability) of the predicted surrogate surface. See Figure

5 for an illustration of the GP model with different power exponential correlation for the same 1-

dimensional test function as in in Figure 1.

13

Figure 5 Mean prediction as per the GP model fit with power exponential correlation with different 𝑝𝑘 for the test function and
data used in Figure 1. The solid curve represents the true underlying simulator output.

Figure 5 shows that the predicted surrogate is spikier at the training points as 𝑝𝑘 gets closer to 1,

and much smoother as 𝑝𝑘 is closer to 2. Theoretically, it can be shown that for 𝑝𝑘 ∈ [1,2), the

correlation kernel is differentiable only once, whereas for 𝑝𝑘 = 2 , the kernel is infinitely

differentiable. Thus, the Gaussian correlation may seems like the most desirable correlation kernel

for GP modelling, however, as shown in Ranjan et al. (2011), the probability of a correlation matrix

being ill-conditioned is substantially reduced if the power is reduced from 𝑝𝑘 = 2 to even 𝑝𝑘 =

1.95 . Furthermore, from a practical standpoint, 𝑝𝑘 close to 2 leads to reasonably smooth

predictor (see 𝑝𝑘 = 1.9 vs. 𝑝𝑘 = 2.0 curves in Figure 5).

Another popular correlation kernel, originated from the kriging literature in Geostatistics,

is called the Matern correlation. This correlation was originally obtained by letting the parameter

in the Gaussian correlation follow Gamma distribution which yielded a positive and spherically

symmetric density proportional to 𝑅(𝑥𝑖, 𝑥𝑗) and then finding that its Fourier transform was also a

probability density (Guttorp and Gneiting, 2006). The Matern correlation kernel is given by:

 𝑅(𝑥𝑖, 𝑥𝑗) = ∏𝑑
𝑘=1

1

Γ(𝜈)2𝜈−1
(√2𝜈|𝑥𝑖𝑗 − 𝑥𝑗𝑘|𝜃𝑘)𝜈𝜅𝜈(√2𝜈|𝑥𝑖𝑗 − 𝑥𝑗𝑘|𝜃𝑘), (9)

where 𝜅𝜈 is modified Bessel function of order 𝜈 and Γ(𝑛) is Gamma function calculated at 𝑛.

The sample paths are ⌈𝜈⌉ − 1/2 times differentiable.

14

For large datasets in particular, Kaufman et al. (2011) used compactly supported

correlation kernel to make the correlation matrices sparse, which leads to efficient evaluation and

hence optimization of the likelihood using sparse matrix algorithms. Let 𝜏 = (𝜏1, . . . , 𝜏𝑑) be the

cutoff to determine the trimmed support of the design points, such that, 𝑅𝑘(|𝑥𝑖𝑘 − 𝑥𝑗𝑘|; 𝜏𝑘) = 0

whenever |𝑥𝑖𝑘 − 𝑥𝑗𝑘| ≥ 𝜏𝑘, where 𝑅𝑘(𝑥𝑖𝑘, 𝑥𝑗𝑘) represents the correlation between 𝑥𝑖 and 𝑥𝑗 for

the 𝑘-th coordinate. Assuming the product correlation form as earlier, let

 𝑅(𝑥𝑖, 𝑥𝑗; 𝜏) = ∏𝑑
𝑘=1 𝑅𝑘(|𝑥𝑖𝑘 − 𝑥𝑗𝑘|; 𝜏𝑘),

where Kaufman et al. (2011) used 𝑅𝑘(ℎ𝑘; 𝜏𝑘) = (1 − ℎ𝑘/𝜏𝑘)cos(𝜋ℎ𝑘/𝜏𝑘) + sin(𝜋ℎ𝑘/𝜏𝑘)/𝜋 .

This correlation kernel is twice differentiable and is mean square differentiable.

The range parameter, 𝜏𝑘, plays an important role in this approach; very similar but greater

than the role of 𝜃 in power exponential correlation. First, they control the degree of correlation in

each dimension like correlation hyperparameter, 𝜃. Second, unlike 𝜃𝑘, 𝜏𝑘 controls the degree of

sparsity in the matrix.

4. VARIATIONS OF GP MODELS

The GP model described thus far is the most basic version of the statistical surrogate developed by

Sacks et al. (1989) for emulating the outputs of a scalar-valued deterministic computer model.

Over the period of time, a host of variations and generalizations have been developed. In this

section, we briefly review a few popular generalizations.

4.1 Non-constant Mean Function

In the context of GP models with different mean functions, thus far, four different types of Kriging

models have been developed: Ordinary Kriging, Simple Kriging, Universal Kriging and Blind

Kriging. The GP model presented in Section 2 is referred to as the Ordinary Kriging model (i.e.,

the model with constant mean 𝜇).

If we pre-specify 𝜇 = 0 in the GP model of Section 2, it is referred to as the Simple

Kriging. The closed form expressions for 𝜎𝑧
2 and the mean prediction along with the uncertainty

estimates are obtained by substituting 𝜇 = 0 in the expressions for Ordinary Kriging:

 𝐸(𝑦(𝑥0)|𝑌) = 𝑟(𝑥0)′𝑅𝑛
−1𝑌, 𝑉𝑎𝑟(𝑦(𝑥0)|𝑌) = 𝜎𝑧

2(1 − 𝑟(𝑥0)′𝑅𝑛
−1𝑟(𝑥0)),

where �̂�𝑧
2 = 𝑌′𝑅𝑛

−1𝑌/𝑛 and the correlation hyperparameter 𝜃 (or another equivalent parameter)

is estimated by maximizing the profiled likelihood.

15

Universal Kriging is a generalization of the Ordinary Kriging model, with the mean term

𝜇 being a linear function of the known basis, i.e., 𝜇(𝑥0) = ∑𝑚
𝑗=0 𝑓𝑗(𝑥0)𝛾𝑗, where 𝛾0 is typically

an intercept like term with 𝑓0(𝑥0) = 1 for all 𝑥0. The parameters and the mean prediction are

obtained similarly as in the Ordinary Kriging, i.e.,

 𝛾 = (𝐹′𝑅𝑛
−1𝐹)−1(𝐹′𝑅𝑛

−1𝑌), �̂�𝑧
2 =

(𝑌−𝐹𝛾)′𝑅𝑛
−1(𝑌−𝐹𝛾)

𝑛
,

and

𝐸(𝑦(𝑥0)|𝑌) = 𝑓(𝑥0)′𝛾 + 𝑟(𝑥0)′𝑅𝑛
−1

(𝑌 − 𝐹𝛾), 𝑉𝑎𝑟(𝑦(𝑥0)|𝑌) = 𝜎𝑧
2(1 − 𝑟′(𝑥0)𝑅𝑛

−1𝑟(𝑥0)).

Since it is impractical to assume that the basis functions in the mean term are known beforehand,

Joseph et al. (2008) developed a new methodology to choose an appropriate set of basis functions

from a class of feasible bases, for the problem at hand. They referred to this variation as the Blind

Kriging model.

4.2 Noisy GP Model

As discussed earlier, realistic simulators of complex processes are sometimes non-deterministic,

and hence the GP models presented thus far are not very appropriate to emulate such simulator

behaviour. In the Machine Learning and Computer Experiment literature, the following version of

the GP model has gained much popularity:

 𝑦𝑖 = 𝜇 + 𝑧(𝑥𝑖) + 𝜀𝑖, 𝑖 = 1,2, . . , 𝑛,

where the additional error term 𝜀𝑖’s are iid 𝑁(0, 𝜎𝜀
2) and independent of {𝑧(𝑥), 𝑥 ∈ [0,1]𝑑}, the

GP with mean zero, variance 𝜎𝑧
2 and correlation kernel 𝑅(⋅,⋅), as defined earlier (see Santner et

al. (2003) for details). Of course, one can use different mean function instead of a constant mean

𝜇 as discussed in the previous section.

The inclusion of an additional error term does not introduce much deviation from the

regular model fitting procedure, because the joint distribution of 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) is

multivariate normal with mean 𝜇1𝑛 and variance-covariance matrix Σ = 𝜎𝑧
2𝑅𝑛 + 𝜎𝜀

2𝐼𝑛, where 𝐼𝑛

is the 𝑛 × 𝑛 identity matrix. Note that rewriting Σ = 𝜎𝑧
2(𝑅𝑛 + 𝛿𝐼𝑛), where 𝛿 = 𝜎𝜀

2/𝜎𝑧
2 translates

this model to the GP model with a nugget term as in Ranjan et al. (2011). Of course, here 𝛿 will

also have to be estimated along with other model parameters. As earlier, one must be cautious in

defining the search space for 𝛿 as very small 𝛿 may lead to near-singular/ill-conditioned Σ.

Moreover, there is no need to adopt the iterative regularization as the simulator is noisy and

interpolation is not the objective.

16

4.3 Dynamic GP Model

Higdon et al. (2008) proposed an SVD-based GP model for the emulation of computer simulators

with highly multivariate outputs, and recently, Zhang et al. (2018b) used it for simulators with

time series responses. Consider a deterministic simulator with 𝑑 -dimensional input 𝐱 ∈ ℝ𝑞 ,

which returns a time series output 𝐲(𝐱) ∈ ℝ𝐿 of length 𝐿.

Let 𝐗 = [𝐱1, … , 𝐱𝑁]𝑇 be the 𝑁 × 𝑞 input matrix and 𝐘 = [𝐲(𝐱1), … , 𝐲(𝐱𝑁)] be the

𝐿 × 𝑁 matrix of time series responses, then the SVD on 𝐘 gives 𝐘 = 𝐔𝐃𝐕𝑇 , where 𝐔 =

[𝐮1, … , 𝐮𝑘] is an 𝐿 × 𝑘 column-orthogonal matrix of left singular vectors, with 𝑘 = 𝑚𝑖𝑛{𝑁, 𝐿},

𝐃 = diag(𝑑1, … , 𝑑𝑘) is a 𝑘 × 𝑘 diagonal matrix of singular values sorted in decreasing order, and

the matrix 𝐕 is an 𝑁 × 𝑘 column-orthogonal matrix of right singular vectors. The SVD-based GP

model for a deterministic simulator is given by,

 𝐲(𝐱) = ∑𝑝
𝑖=1 𝑐𝑖(𝐱)𝐛𝑖 + 𝜀, (10)

where the orthogonal basis 𝐛𝑖 = 𝑑𝑖𝐮𝑖 ∈ ℝ𝐿, for 𝑖 = 1, … , 𝑝, are the first 𝑝 vectors of 𝐔 scaled

by the corresponding singular values. The coefficients 𝑐𝑖’s in (10) are random functions assumed

to be independent scalar response GP models, i.e., 𝑐𝑖~GP(0, 𝜎𝑖
2𝑅𝑖(⋅,⋅;𝑖)) for 𝑖 = 1, … , 𝑝

(Rasmussen and Williams, 2006). The residual error 𝜀 in (10) is assumed to be independent

Gaussian white noise, that is, 𝜀~𝒩(0, 𝜎2
𝐿).

The built-in function called svdGP in the R package DynamicGP provides an easy

implementation of this surrogate model (Zhang et al., 2018a). The arguments of svdGP can also

be tuned to speed up the computation by parallelization.

4.4 Non-stationary GP Model

Though we have not been very explicit yet, most of the discussion on GP models assumed that the

underlying process / phenomena is stationary. The standard GP itself is defined to be covariance

(i.e., weak) stationary. However, in reality, there are several phenomena that are non-stationary,

which in a lay man terms is like a function with abrupt changes in the curvature or shape. For

instance, Figure 6 shows two real-life applications. The left panel represents the output of a

simplified simulator which generates the average maximum extractable power from the Minas

Passage, Bay of Fundy, Nova Scotia, Canada, given that one turbine fence is already present in the

Passage (Chipman et al., 2012). The right panel presents the simulated measurements of the

acceleration of the head of a motorcycle rider as a function of time in the first moments after an

impact (see mcycle data in the R library MASS for details). These are undoubtedly non-stationary

processes, and standard GP models would not serve as adequate surrogate models (see the

rightmost panel of Figure 7).

17

Figure 6 Left panel: maximum extractable power from the Minas Passage (simplified computer model for turbine placement in
the Bay of Fundy, Nova Scotia, Canada, see Chipman et al. (2012)). Right panel: acceleration of the head of a motorcycle rider as
a function of time in the first moments after an impact (see mcycle in R library MASS for details).

One naive way to capture the non-stationarity is to detrend the data via carefully chosen

mean basis (as discussed in Section 4.1), and then use the standard GP model to emulate the

residual stationary process. Over the last two decades, several innovative surrogates have also been

developed to emulate the non-stationary computer model responses. For instance, Higdon et al.

(1999) made some fundamental methodological contribution towards the non-stationary

correlation structure, but the computer experiment literature itself was not mature enough until

early - mid 2000’s. Paciorek and Schervish (2004) further formalized this GP-based emulator.

Gramacy (2007) combined the idea of regression trees with GP model and developed Treed GP

model (TGP), which is simply fitting GP models instead of constants to the terminal nodes. Ba

and Joseph (2012) suggested a sum of two GP model strategy to separately capture the local

nuances and fluctuations versus the overall global trend. Chipman et al. (2012) further

demonstrated that a Bayesian Additive Regression Tree (BART) can easily be used to emulate

non-stationary computer simulator outputs and are perhaps more reliable than many other

competitors for large datasets (see Figure 7 for an illustration on the motorcycle data). Recently,

Volodina and Williamson (2018) used a mixture of GP based approach for this surrogate building

exercise.

18

Figure 7 Mean prediction for the Motor Cycle data (source: R library MASS) as per BART model (Chipman et al., 2012), TGP model
(Gramacy, 2007) and standard GP model via GPfit (MacDonald et al., 2015) (in order, from left to right).

5. BIG DATA AND HIGH PERFORMANCE COMPUTING

The accelerated growth in the computing power of data processing and storage has led to a new

area of science called the BIG data. Specifically, the data from computer simulators can easily get

really large if the simulator is computationally fast. Over the last decade, the researchers have been

investigating both aspects, the innovative methodologies for modelling and analysis, and efficient

implementation techniques and algorithms for BIG data obtained from computer simulators.

5.1 Methodological Innovations

For Gaussian process models, exact calculations of 𝑅𝑁

−1 requires 𝑂(𝑁3) operations, which has to

be done numerous times for likelihood optimization. Thus, efficient evaluation of the likelihood

function is extremely crucial for GP modelling for a very large training dataset (of size 𝑁, say).

Though there are several interesting methodological contributions, we briefly discuss a few very

popular ones.

Stein et al. (2004) proposed an approach to break down the joint multivariate normal

density into a product of conditional densities that significantly reduces the computational time.

Furrer et al. (2006) and Kaufman et al. (2011) suggested using “tapering” in the correlation

matrices via a compactly supported kernel (see Section 3.4), so that the sparse matrix algorithms

can be better utilised for computational savings.

Another line of approach is to replace one big common GP model on a very large dataset

19

(say 𝑁) with several local models based on small datasets of (say) size 𝑛 (≪ 𝑁) each for

approximating the predicted response at an arbitrary 𝐱0 in the input space. Let 𝐗 be the large

training set of 𝑁 points, and 𝐗(𝑛)(𝐱0) or 𝐗(𝑛) (in short) denote the desired subset of which

defines the 𝑛-point neighborhood of 𝐱0 contained in 𝐗. We briefly discuss two methods of

constructing this neighborhood set 𝐗(𝑛). The first one, called as the naive approach, assumes the

elements of the neighborhood set 𝐗(𝑛) by finding 𝑛 nearest neighbors of 𝐱0 in 𝐗 as per the

Euclidean distance in the k-nearest neighbor method. The emulator obtained via fitting a GP model

to this local set of points is referred to as 𝑘-nearest neighbor GP model (in short, knnGP). Though,

knnGP is computationally much cheaper than the full GP model (in short, fullGP) trained on 𝑁

points, its prediction accuracy may not be satisfactory. Emery (2009) finds the neighborhood set

𝐗(𝑛)(𝐱0) (for every 𝐱0) using a greedy approach. Gramacy and Apley (2015) further improved

the prediction accuracy by using a sequential greedy algorithm and an optimality criterion for

finding a non-trivial local neighborhood set (see Figure 8 for an illustration). This method is also

tailored for computation on modern day multi-processing, multi-threaded computers.

Figure 8 Local neighbourhood selection as per the k-nearest neighbour method (blue squares) and the greedy approach (red
triangle) by Gramacy and Apley (2015) for prediction at the location marked by black plus.

5.2 Computational Efficiency

In recent times, researchers have started focussing on the development of algorithms that are

computationally efficient, can easily be parallelized, and in particular suitable for large data sets.

Many of the software packages that are now being released, come with MPI, Open MP and CUDA

code components, which have the option of running codes in parallel and/or use the built-in GPU

components for faster processing.

20

Despite using sophisticated methodologies developed for handling big data, fitting GP

models for big data can often be computationally expensive. Franey et al. (2012) demonstrate how

Graphics Processing Units (GPU) give us more computing power than Central Processing Units

(CPU) for standard GP models. For a quick reference, Table 1 presents a comparison of

computation time for the standard CPU computing versus CPU+GPU implementation. Note that

the results were obtained on a naive high performance computing (HPC) supported desktop (that

a student could afford in 2011, the time of research), and now a much more significant

improvement can be recoded on the latest HPC platform.

Table 1 Performance comparison of standard GP model fits. The outputs are generated via Hartman-6 function, and the inputs
are random maximin Latin hypercube designs in [0,1]^6. The results are averaged over 10 simulations, except the last row of
CPU implementation (denoted by ∗), which is based on only 1 simulation. See Franey et al. (2012) for details.

CPU Implementation

𝑛 Time (𝑠) −2𝑙𝑜𝑔𝐿𝜃 �̂� �̂�𝑧
2 SSPE

64 32.32 125.94 0.1771 0.1403 77.4160

256 514.43 610.25 0.1105 0.1164 27.4311

1024 13325.86 2491.97 0.0609 0.0970 5.6504

4064 *161925.05 *8044.80 *0.0485 *0.0824 *0.5320

CPU Implementation

𝑛 Time (𝑠) −2𝑙𝑜𝑔𝐿𝜃 �̂� �̂�𝑧
2 SSPE

64 9.45 103.70 0.1238 0.2989 91.7860

256 16.58 547.10 0.1397 0.1746 31.4641

1024 96.19 2665.58 0.1192 0.1390 4.3850

4064 1059.71 8698.28 0.0803 0.0700 0.5314

In summary, parallel-running GPUs when combined with CPUs are far more effective on

per-dollar basis than most multi-core CPUs (alone). Gramacy et al. (2014) and Liu et al. (2018)

investigated it further and developed more advanced methodologies and implementation

algorithms particularly advantageous for large data sets. New R libraries like laGP (Gramacy,

2015) and DynamicGP (Zhang et al., 2018a) takes the advantage of multi-core processors and run

specific tasks in parallel. One can also specify the number of threads to be assigned for a particular

code in these packages.

HPC on Microsoft R has recently been gaining popularity as well. Microsoft R is an

enhanced version of R which supports multithreading for calculations. The original R was

designed to use single thread for computations and this modified version adds Intel Math Kernel

Library (IMKL) which significantly decreases computational expenses. Microsoft R functions

exactly like R; so there is no change required in the code or library. Matrix operations in particular

are immensely benefited by using multithreading approach. The benchmark reports can be

accessed at https://mran.microsoft.com/documents/rro/multithread. To reproduce the results and

better understanding, one can see GitHub repository: https://github.com/andrie/version.compare.

https://mran.microsoft.com/documents/rro/multithread
https://github.com/andrie/version.compare

21

6. DATA ANALYSIS GOALS

There are several popular pre-specified objectives of running computer simulators and data

analysis. For instance, (a) the overall understanding of the entire simulator response surface, (b)

the estimation of a predetermined feature of interest, such as, the global minimum, a contour (also

referred to as the inverse solution), a quantile, etc. (c) the calibration of the simulator itself, and

(d) identification of important input variables.

A major portion of computer experiment literature emphasize on the “design of computer

experiments", which refers to the technique of choosing a set of input combinations (𝑥’s) for

running the computer simulator. For objective (a) listed above, several good designs have been

developed. One of the most popular jargon in this section of the literature is Latin hypercube based

designs with space-filling properties like maximin interpoint distance, minimum pairwise-

coordinate correlation, and so on. Given that the goal is to explore the overall simulator response

surface, the most common form of analysis is the “sensitivity analysis" - which sort of overlaps

with objective (d).

Over the last two decades, many researchers in this area have focussed on developing

innovative methods and algorithms for estimating process optimum. However, this was under the

assumption that the computer simulator is computationally expensive to run, and subsequently, the

training data is not large enough to be classified as BIG data. Though the size of the training data

can sometimes be in thousands, the corresponding input dimension is too large (e.g., 20) to prevent

thorough exploration of the input space using 1000 points. That is, the budget for the total number

of simulator runs (say 𝑛) is pre-fixed and too small (with respect to the input dimension 𝑑) to use

traditional optimization techniques, which led to the need for a new method for global optimization

in computer experiments.

Jones et al. (1998) proposed an efficient sequential design scheme for finding the global

minimum. The algorithm starts with choosing an initial design of size 𝑛0(≪ 𝑛) and then selects

the remaining 𝑛 − 𝑛0 follow-up points sequentially one at-a-time by maximizing a merit-based

criterion called the expected improvement (EI). In Jones et al. (1998), the EI criterion is simply the

expectation of the improvement function,

 𝐼(𝑥) = max{𝑓𝑚𝑖𝑛
(𝑘)

− 𝑦(𝑥),0},

with respect to the predictive distribution of 𝑦(𝑥) given the observed data on 𝑛0 + 𝑘 points,

where 𝑓𝑚𝑖𝑛
(𝑘)

 is the running estimate of the global minimum, and 𝑦(𝑥) is the unobserved response

at the input 𝑥. This approach gained significant popularity because the EI criterion facilitated a

tradeoff between the local exploitation and the global exploration, i.e., the algorithm made sure

22

that the global minimum was found and did not get stuck in the local optimum. Since then a

plethora of slightly different EI criteria have been proposed for the global minimum (see, for

example, Schonlau et al. (1998) and Santner et al. (2003)).

Ranjan et al. (2008) extended the EI approach for estimating a pre-specified contour (also

popularly referred to as the inverse solution) from an expensive to evaluate deterministic computer

simulator. The notion of contour estimation was further adopted for quantile estimation and

estimating the tail probability of failure (see Bingham et al. (2014) for a review). The complexity

of the estimation of an inverse solution increased substantially when the computer simulator

returns a time-series response instead of a scalar. Ranjan et al. (2016) tried to use a standard GP

model based EI approach via scalarization technique for solving this inverse problem. Vernon et

al. (2010b) proposed a history matching algorithm for this purpose, and recently, Zhang et al.

(2018c) further extended the EI approach under the SVD-based GP models for dynamic simulator

response.

7. REAL-LIFE COMPUTER MODELS

The applications of real-life computer models range over a wide spectrum of discipline, from

behavioural models to the simulation of a nuclear reaction. In this section, we present brief

descriptions of a few real-life simulators.

TDB model: The underlying objective is to gain a thorough understanding of the population

growth of a pest called the European red mites (ERM) or Panonychus ulmi (Koch). ERM infest on

apple leaves, resulting in poor yields, and hence a concern for apple farmers in the Annapolis

Valley, NS, Canada. Franklin (2014) developed a mathematical-biological model based on

predator-prey dynamics called the Two-Delay Blowfly (TDB) model, which consists of eleven

parameters treated as the inputs to the model, and produces time-series outputs that characterize

the ERM population growth. Ranjan et al. (2016) did some preliminary research on the calibration

of this simulator. Recently, Zhang et al. (2018b) built a dynamic GP model for analyzing BIG data

obtained from the TDB model. Zhang et al. (2018c) further extended the work to find the optimal

set of inputs of the TDB model that gives a good approximation to a pre-specified target (e.g., the

field data). The intent behind this inverse problem was to calibrate the TDB model to produce

realistic outputs closer to the reality.

Tidal power model: The Bay of Fundy, located between New Brunswick and Nova Scotia,

Canada, is world famous for its high tides. Among others, Karsten et al. (2008) suggested

harnessing this green / renewable tidal energy by installing a host of in-stream tidal turbines.

However, the cost of building a turbine and installing it in the Bay of Fundy is extremely high (in

millions of dollars). Thus, it is desirable to minimise the number of turbines to harness the

maximum extractable total power. However, a physical experiment to find the optimal locations

of these tidal turbines is infeasible due to the cost constraint. Karsten et al. (2008) developed a

23

version of the finite volume community ocean model (Greenberg, 1979), for preliminary analysis

and experimentation in the Minas Passage of the Bay of Fundy. Ranjan et al. (2011) used this

computer model for finding the optimal location of one tidal turbine by maximising the power

function. Chipman et al. (2012) used non-stationary surrogate model based optimization strategy

for finding the optimal locations of several turbine fences for a case study by Karsten et al. (2008).

SWAT model: Soil and Water Assessment Tool (SWAT) model is an internationally recognised

computer model which simulates runoff from watershed areas based on climate variables, soil

types, elevation and land use data (Arnold et al, 1994). Bhattacharjee et al. (2017) used a modified

history matching algorithm built upon the GP-based surrogate for calibrating this model with

respect to the Middle Oconee River (Georgia, USA) data. The idea of history matching was

popularised by Vernon et al. (2010, 2014) when calibrating a Galaxy formation simulator called

GALFORM.

MRST model: Finding the optimal drilling locations for production and injection wells in an oil

reservoir is of utmost importance (see Onwunalu and Durlofsky, 2010). Butler et al. (2014) used

a Matlab Reservoir Simulator (MRST) (Lie et al., 2012) to generate the anticipated net present

value (NPV) of the produced oil for a well to be drilled at a particular location. The goal here was

to determine the configuration of wells that yields the best NPV.

8. CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we have reviewed the Machine Learning and Statistics literature on design, analysis

and modelling of data arising from computer simulation models. Recall that computer models are

often used as cheaper alternatives for complex physical phenomena, however, simulators can also

be computationally too expensive for thorough experimentation, and for which, statistical models

are used to emulate the simulator output. For the last two decades, realisations of Gaussian process

(GP) models are used for this emulation. Section 2 of this chapter presented a brief review of the

most basic GP regression model. This non-linear semi-parametric regression model may appear to

be straightforward, however, the numerical issues in fitting this model are somewhat involved. In

Section 3, we have briefly reviewed the major computational concerns, i.e., the near-singularity of

the correlation matrix, efficient matrix decomposition methods, choice of correlation kernels, and

the reparametrization of the correlation length parameters. Section 4 summarized a variety of

popular GP-based surrogates under the generalised setup such as non-stationarity, dynamic

response model, and stochastic simulators. The treatment of BIG data obtained from computer

models was briefly discussed in Section 5, and Section 6 reviewed a few popular analysis goals of

such computer experiments. Finally, Section 7 presented a brief description of a few real-life

computer models.

With respect to the future research directions, the relentless growth in the computing power

24

demands for more advanced methodologies and efficient algorithms. Furthermore, not all

methodologies developed thus far are full proof in every aspect. For instance, the nugget based

approach had been developed only when the GP model was to be built for the overall good fit. If

the objective is to estimate a pre-specified feature of interest like the global optimum, then the

proposed lower bound of the nugget would not work, and is still an open research problem. On the

other hand, the power-exponential correlation with 𝒑𝒌 < 𝟐 (say 1.95) substantially reduces the

chances of near-singularity, however, does not completely resolves it. The development of new

methodologies and analysis for dynamic GP models is still at the early stage, and much further

work have to be done, e.g., the construction of optimal design for different analysis objectives.

Under the umbrella of BIG data, most of the innovative work thus far focus on tweaking the

existing methodologies, for example, via conditional likelihood or sparse computations. New

innovative methodologies and algorithms (e.g., for building specific surrogate model and

constructing optimal design) tailored towards BIG data are still open research problems.

ACKNOWLEDGMENT

The authors would like to thank the Editor and four anonymous referees for their thorough and

helpful reviews. Ranjan’s research was partially supported by the Extra Mural Research Fund

(EMR/2016/003332/MS) from the Science and Engineering Research Board, Dept. of Science and

Technology, Govt. of India.

REFERENCES

Arnold, J., Williams, J., Srinivasan, R., Kings, K., and Griggs, R. (1994). SWAT: soil and water

assessment tool. US Department of Agriculture, Agricultural Research Service,

Grassland, Soil and Water Research Laboratory, Temple, TX.

Ba, S. and Joseph, V. R. (2012). Composite Gaussian process models for emulating expensive

functions. Annals of Applied Statistics, 6:1838–1860.

Bhattacharjee, N.V., Ranjan, P., Mandal, A., and Tollner, E.W. (2017). Inverse mapping for

rainfall-runoff models using history matching approach. arXiv: 1709.02907.

Bingham, D., Ranjan, P., and Welch, W. J. (2014). Sequential design of computer experiments for

optimization, estimating contours, and related objectives. In Statistics in Action: A

Canadian Outlook, Chapman & Hall/CRC, pages 109–124.

Booker, A. J., Dennis, J. E. Jr., F. P. D., Serafini, D. B., Torczon, V., and Trosset, M. W. (1999).

A rigorous framework for optimization of expensive functions by surrogatess. Structural

and Multidisciplinary Optimization, 17:1–13.

25

Butler, A., Haynes, R.D., Humphries, T.D., and Ranjan, P. (2014). Efficient optimization of the

likelihood function in Gaussian process modelling. Computational Statistics and Data

Analysis, 73, 40-52.

Chipman, H., Ranjan, P., and Wang, W. (2012). Sequential design for computer experiments with

a flexible bayesian additive model. Canadian Journal of Statistics, 40(4):663–678.

Dancik, G. M. and Dorman, K. S. (2008). mlegp: statistical analysis for computer models of

biological systems using R. Bioinformatics, 24(17):1966–1967.

Emery, X. (2009). The kriging update equations and their application to the selection of

neighboring data. Computational Geosciences, 13(3):269–280.

Fang, K.-T., Li, R., and Sudjianto, A. (2005). Design and modeling for computer experiments.

Chapman and Hall/CRC.

Franklin, J. (2014). Modelling European red mite population using the inverse approach. Master’s

thesis. Acadia University.

Franey, M., Ranjan, P., and Chipman, H. (2012). A short note on Gaussian process modeling for

large datasets using graphics processing units. arXiv:1203.1269.

Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance tapering for interpolation of large

spatial datasets. Journal of Computational and Graphical Statistics, 15(3):502–523.

Gramacy, R., Niemi, J., and Weiss, R. (2014). Massively parallel approximate Gaussian process

regression. SIAM/ASA Journal on Uncertainty Quantification, 2(1):564–584.

Gramacy, R. B. (2007). tgp: an R package for Bayesian nonstationary, semiparametric nonlinear

regression and design by treed Gaussian process models. Journal of Statistical Software,

19(9):1–46.

Gramacy, R. B. (2015). laGP: Local approximate Gaussian process regression. R package version

1.2-1.

Gramacy, R. B. and Apley, D. W. (2015). Local Gaussian process approximation for large

computer experiments. Journal of Computational and Graphical Statistics, 24(2):561–

578.

26

Gramacy, R. B. (2016). lagp: Large-scale spatial modeling via local approximate gaussian

processes in R. Journal of Statistical Software, 72(1):1–46.

Gramacy, R. B. and Lee, H. K. (2012). Cases for the nugget in modeling computer experiments.

Statistics and Computing, 22(3):713–722.

Greenberg, D. (1979). A numerical model investigation of tidal phenomena in the Bay of Fundy

and Gulf of Maine. Marine Geodesy, 2, 161-187.

Guttorp, P. and Gneiting, T. (2006). Studies in the history of probability and statistics xlix on the

matrn correlation family. Biometrika, 93(4):989–995.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer model calibration using

high-dimensional output. Journal of the American Statistical Association, 103(482):570–

583.

Higdon, D., Swall, J., and J., K. (1999). Non-stationary spatial modeling. In Bernardo, Berger,

Dawid, and Smith, editors, Bayesian Statistics 6, 761– 768.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive

black-box functions. Journal of Global optimization, 13(4):455–492.

Joseph, V., Hung, Y., and Sudjianto, A. (2008). Blind kriging: A new method for developing

metamodels. ASME. J. Mech. Des., 130(3):031102–031102–8.

Karsten, R. McMillan, J., Lickley, M., and Haynes, R. (2008). Assessment of tidal current energy

for the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical

Engineers, Part A: Journal of Power and Energy, 222, 493-507.

Kaufman, C. G., Bingham, D., Habib, S., Heitmann, K., and Frieman, J. A. (2011). Efficient

emulators of computer experiments using compactly supported correlation functions,

with an application to cosmology. The Annals of Applied Statistics, pages 2470–2492.

Lie, K.-A., Krogstad, S., Ligaarden, I., Natvig, J., Nilsen, H., and Skaflestad, B. (2012). Open-

source MATLAB implementation of consistent discretizations on complex grids.

Computational Geosciences, 16(2), 297-322.

Linkletter, C., Bingham, D., Hengartner, N., Higdon, D., and Ye, K. Q. (2006). Variable selection

for gaussian process models in computer experiments. Technometrics, 48(4):478– 490.

27

Liu, H., Ong, Y.-S., Shen, X., and Cai, J. (2018). When Gaussian process meets big data: A review

of scalable GPs. arXiv:1807.01065.

MacDonald, B., Ranjan, P., and Chipman, H. (2015). GPfit : An R package for fitting a Gaussian

process model to deterministic simulator outputs. Journal of Statistical Software,

64(12):1–23.

Neal, R. (1997). Monte Carlo implementation of Gaussian process models for Bayesian regression

and classification. Technical Report, Deptartment of Statistics, University of Toronto,

Canada., 9702.

Onwunalu. J., and Durlofsky, L. (2010). Application of a particle swarm optimization algorithm

for determining optimum well location and type. Computational Geosciences, 14, 183-

198.

Paciorek, C. and Schervish, M. J. (2004). Nonstationary covariance functions for Gaussian

process regression. In Advances in Neural Information Processing Systems 16, MIT

Press: Cambridge, MA; 273–280

Pratola, M. T., Sain, S. R., Bingham, D., Wiltberger, M., and Rigler, E. J. (2013). Fast sequential

computer model calibration of large nonstationary spatial-temporal processes.

Technometrics, 55(2):232–242.

Ranjan, P., Bingham, D., and Michailidis, G. (2008). Sequential experiment design for contour

estimation from complex computer codes. Technometrics, 50(4):527–541.

Ranjan, P., Haynes, R., and Karsten, R. (2011). A computationally stable approach to Gaussian

process interpolation of deterministic computer simulation data. Technometrics,

53(4):366–378.

Ranjan, P., Thomas, M., Teismann, H., and Mukhoti, S. (2016). Inverse problem for a timeseries

valued computer simulator via scalarization. Open Journal of Statistics, 6(3):528.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learning. 2006. The

MIT Press, Cambridge, MA, USA, 38:715–719.

Roustant, O., Ginsbourger, D., and Deville, Y. (2012). DiceKriging, DiceOptim: Two R packages

for the analysis of computer experiments by kriging-based metamodeling and

optimization. Journal of Statistical Software, 51, 1-55.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of computer

28

experiments. Statistical Science., 4(4):409–423.

Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of Computer

Experiments, Springer-Verlag, New York.

Schonlau, M., Welch, W. J., and Jones, D. R. (1998). Global versus local search in constrained

optimization of computer models. Institute of Mathematical Statistics, Hayward, CA,

Lecture Notes-Monograph Series, 34, 11–25.

Stein, M. L., Chi, Z., and Welty, L. J. (2004). Approximating likelihoods for large spatial data sets.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(2):275–

296.

Vernon, I., Goldstein, M., Bower, R. G., (2010). Galaxy formation: a bayesian uncertainty

analysis. Bayesian Analysis, 5(4):619–669.

Vernon, I., Goldstein, M., Bower, R. G., (2014). Bayesian history matching for the observable

universe. Statistical Science, 29(1):81–90.

Volodina, V. and Williamson, D. (2018). Nonstationary Gaussian process emulators with kernel

mixtures. arXiv preprint 1803.04906.

Zhang, R., Lin, C. D., and Ranjan, P. (2018a). DynamicGP: Local Gaussian Process Model for

Large-Scale Dynamic Computer Experiments. R package.

Zhang, R., Lin, C. D., and Ranjan, P. (2018b). Local Gaussian process model for largescale

dynamic computer experiments. Journal of Computational and Graphical Statistics,

27(4), 798-807.

Zhang, R., Lin, C. D., and Ranjan, P. (2018c). A sequential design approach for calibrating a

dynamic population growth model. arXiv:1811.00153.

