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Abstract. HP Inc. manufactures and sells more than 18,000 Print-related products in over 170 countries.
Accurate forecasting of the heterogeneous and dynamic demand is vital to support supply planning decisions
for manufacturing, inventory management, shipment scheduling, and ultimately, customer satisfaction.
Forecasting higher or lower than actual demand results in excess or shortage that reduces profitability
and impacts on-time delivery to customers. Historically, the supply planning depended on (1) consensus
demand forecasting approach, which requires manual collection and integration of information by the
forecasting experts, and (2) statistical time-series forecasting models. The consensus forecasting approach also
requires frequent corrections if some uncertainties in the demand are not accounted for when releasing the
forecasting results. Traditional time-series models can work automatically without frequent correction, but
their forecasting performance is unsatisfactory because of oversimplified modeling inputs and assumptions. In
this project, we document the process of using machine learning (ML) techniques across all Print products at
HP Inc., worldwide. Our aim is to automate the forecasting process with high accuracy and to integrate
those results into a human-in-the-loop process that merges the strengths of ML, statistical, and consensus
forecasting. Our tree-based (LightGBM) forecasting model reduced systematic errors in comparison with
existing approaches, such as the consensus and statistical forecasting approaches, and was deployed as an
integrated part of HP Inc.’s forecasting process. Furthermore, our ML framework establishes strong foundation
for further methodological improvements in the ML algorithm. We report extensive empirical evidence guiding
our methodology design and demonstrating the business implications of our project. We also share several
important principles we have applied to manage team-based collaboration for an enterprise-scale project and

to ensure the success of our ML-based demand forecasting.
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Introduction
Background

HP Inc. manufactures and sells over 18,000 stock-keeping units (SKUs) of Print products
that are sold in over 170 countries. They include home printers, office printers, ink, toner,
and other services such as 3D and large-format printing. Specifically, home printers are
targeted to consumers looking to buy standalone printers. They’re usually sold through
channel partners, including retailers like Walmart and Amazon. Office printers are usually
sold via business contracts through managed account deals. The consumables, ink and toner,
are sold to existing printer owners. 3D Printing offers a portfolio of additive manufacturing
solutions and supplies to help customers with unique or experimental demands. Additionally,
HP offers large-format printing solutions and supplies through industrial products. Beyond
these five top-level categories, products are further classified based on their technology and
platform, resulting in over 18,000 SKUs. Building on this portfolio breadth, HP operates on
a global scale with markets organized into three world regions: Americas (AMS); Europe,
Middle East, and Africa (EMEA); and Asia-Pacific (APAC). Countries in each world region
are grouped by geographical proximity, and the demand forecasting is needed for each SKU
in each group of countries (GOC).

Given its diverse product portfolio and extensive global reach, accurate demand forecasting
is a crucial component of operational strategy for an international company like HP. Indeed,
accurate forecasts are critical to planning and operational decisions such as strategically
allocating resources, managing inventory, and aligning production schedules with consumer
demand (Gardner 1990, Ritzman and King 1993, Lee 2002, Seifert et al. 2015). Furthermore,
past studies have highlighted that effective forecasting not only can support business
operations but also can lead to cost savings and improved efficiency throughout the supply
chain (Simatupang and Sridharan 2005, Seifert et al. 2015, Fildes et al. 2022). With the
advancement of machine learning (ML) technologies, there has been a significant interest
from academics and practitioners in applying ML methods for these forecasting tasks. This
paper discusses the challenges and solutions to deploy an ML-based framework to forecast

product demand for a Fortune 500 technology company like HP.

Current Practices
Before implementing ML-based models, we relied on statistical and consensus forecasts

for demand forecasting. The statistical forecasts leverage historical demand data and
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use conventional time-series models, such as autoregressive (AR), moving averages (MA),
ARMA, ARIMA, and exponential smoothing (ETS) models (Hyndman and Athanasopoulos
2018). These models are cost-effective and easy to implement, but they often lack the
nuance required for accurate forecasting because of oversimplified modeling assumptions.
Statistical models are also “local” in nature, training with a single time series, whereas
ML-based models are “global,” incorporating details from multiple time series. Local models
struggle with short product life cycles, whereas global models learn from similar products.
A common attempt to handle this is through predecessor-successor mapping, but such
information is not always readily available to forecasters (Manary et al. 2019). In contrast,
the consensus forecasts incorporate quantitative information such as historical demand and
current inventory levels, as well as qualitative demand signals and contextual information,
with the statistical forecast also serving as an input. Particularly, the consensus forecasters
heavily leverage “soft data” like customer demand sentiments and deal progress. Soft data
include qualitative knowledge on upcoming promotions offered by channel partners to their
customers, deal stage for bulk corporate orders, subjective opinions from market insiders
and experts, and networking insights through deep business relationships, among others
(Fildes et al. 2009, Petropoulos et al. 2018). Although soft data are challenging to include
and maintain, their strategic advantages in capturing transient market conditions make the
data invaluable to forecasting, especially contributing to robustness of planner forecasts.
Moreover, the superiority of a data-based method compared with human judgmental
forecasts is not always true. Zellner et al. (2021) surveyed literature on human judgment and
quantitative forecasting as well as hybrid methods that involve both humans and algorithmic
approaches. They found that although quantitative methods have gotten popular over
time, they are not universally superior to human judgment; the better method is subject
to the availability, quality, extent, and format of data. Indeed, the two approaches can
complement each other to yield more accurate and resilient models. Recent research also
shows that human-based forecasts struggle to effectively filter out noise in the inputs.
In fact, forecasters tend to reproduce the noise in a time series in their forecasts rather
than filter it out (Petropoulos and Siemsen 2023). Khosrowabadi et al. (2022) evaluate
Al-generated forecasts for a major European retailer, revealing that product attributes like

price, freshness, and discounts play a crucial role in adjustment decisions. They find that
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Figure 1. (Color online) Overview of the Forecasting Process
Notes. Our approach leverages historical and additional data to create robust statistical and machine learning forecasts.
These forecasts are then refined by consensus planners, serving as the crucial human element in the loop, to formulate

a comprehensive forecast that informs granular supply planning. The focus of this work is “ML Forecasting.”

whereas large positive adjustments are more common, they tend to be less accurate. In
contrast, large negative adjustments, although less frequent, are generally more precise.
To bridge these gaps and develop a unified approach, an expert group was tasked with
developing and deploying an ML-based framework for demand forecasting. Armed with ML
knowledge and domain expertise, the Strategic Planning and Modeling (SPaM) group at
HP Inc. utilized a tree-based ML model using Light GBM for forecasting Print demand and
deployed the model for forecasting at scale. Figure 1 depicts and compares the different
demand forecasting solutions, where our focus is to develop the new ML forecasts as shown

in the orange box.

Strategic Planning and Modeling Group (SPaM)

Formed in 1994, SPaM is a team of operations research specialists, data scientists, and
external collaborators who provide internal support to HP product divisions to improve
their efficiency, cost-effectiveness, and profitability (Laval et al. 2005). SPaM has developed
and adapted many supply chain models for specific applications at HP (Cargille and
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Branvold 2000). For example, Ward et al. (2010) documents the team’s work in transforming
product portfolio management: developing a new framework for screening new products
using custom return-on-investment calculators, and a revenue-coverage-optimization tool
to manage product variety after introduction. Similarly, Billington et al. (2004) documents
how efforts from SPaM helped HP create a standard process for analyzing and designing

supply chain networks.

Challenges

Implementing machine learning forecasting methods at the scale required for predicting
demand for 18,000 SKUs across 170+ countries is a complex and resource-intensive endeavor,
despite the accuracy improvements and efficiency they offer. Here, we outline some of the
key challenges in adopting these techniques for product demand forecasting at HP. First,
demand for products in different markets can be impacted by the complex interplay of
various factors, such as economic conditions, seasonal trends, and regional variations. As
shown in Figure 1, our approach incorporates both historical demand data and additional
data sets, such as channel inventory, to refine predictions. Given the scope of the problem
involving a wide range of products being sold across numerous market regions, it is a
nontrivial endeavor to develop one versatile model to incorporate all the factors that
can generalize well while still being tailored to individual products and regions. Second,
adaptability to market fluctuations and external factors is essential for accurate predictions
in the face of demand shifts, supply chain disruptions, or unforeseen events. Our continuous
improvement process, depicted in Figure 1, allows us to refine our methods and algorithms
to better handle these changes, but ensuring real-time adaptability remains an ongoing
challenge. Third, the availability and quality of historical demand data also play a crucial
role in the prediction performance (Cortes et al. 1994). Addressing data quality issues, such
as inconsistent, inaccurate, outdated, and missing information, is crucial to ensure that the
forecasting model is robust and reliable to support planning and operational decisions.

In addition to the three technical challenges in developing the ML models for demand
forecasting, a robust project management strategy is pivotal for the successful deployment
of such project, discussed later in detail. To achieve that, our team coordinated efforts from
data scientists, production planners, and external experts, in addition to the consensus and
statistical forecasting teams. By refining the model through iterative design and experimental

validation, we can deliver more accurate forecasts while complementing existing statistical
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and consensus forecasting methods. Our goal is to create analytical forecasts using more
advanced models than simplistic statistical models, which demonstrates higher accuracy
than planners’ forecasts. However, it is not imperative to predict everything more accurately.
As shown in Figure 1, the novelty of our system lies in its dynamic switching between ML
and statistical forecasts on a product-by-product and geography-specific basis, ensuring
the most accurate method is always applied across global markets. When the accuracy of
the ML model outperforms the traditional statistical forecasts in terms of accuracy, it is
beneficial to use ML forecasts as the basis for the consensus forecasts—that is, choosing
the best analytical forecast by product and geography. Combining analytical forecasts with
planner forecasts is known to increase forecast accuracy (Lawrence et al. 1986, Armstrong
2001). Our system, akin to human-in-the-loop, allows planners to automate usage of best
performers as final forecasts, freeing them to focus on critical products. This collaborative
approach enables all three forecasts to continue to improve in parallel while shifting the
work to higher-value-add analytics as the ML forecast improves.

Rigor in our approach is demonstrated through extensive experimentation, in which we
tested multiple ML algorithms (e.g., XGBoost, Random Forests) before selecting Light GBM
for its superior speed and accuracy. Using Hyperopt for hyperparameter optimization, we
fine-tuned the model for optimal performance across various markets, validated through
rigorous back-testing over years of historical data and benchmarked against statistical and

planner forecasts.

Contributions

Addressing the limitations described in the previous section in traditional demand forecasting
by creating an accurate, automated ML model is a challenging yet valuable endeavor.
Implementing this at HP—that is, forecasting 18,0004 products across 170 countries—
provides a scalable case study for other businesses. Our key contributions include the
following;:

1. Scalable ML-based forecasting framework: We demonstrate the effectiveness of
tree-based models, specifically Light GBM, in addressing enterprise-scale product demand
forecasting challenges across diverse products and countries.

2. ML operations (MLOps) for forecasting: We stress the need for robust project
management and maintenance strategies, specifically aligning with principles outlined by

Curtland et al. (2022). Our framework values reproducible analysis with parameterized
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notebooks and the use of advanced experiment tracking for sustaining the performance and
reliability of models over time with MLFlow (Zaharia et al. 2018).

3. Case study at HP Inc.: Our work serves as a comprehensive guide for both
practitioners and researchers attempting to tackle similar enterprise-scale forecasting
challenges in other industries or contexts. This work establishes a strong foundation for

further ML model improvements and operationalizing them at scale.

Literature Review

Demand forecasting models are pivotal for managing production and inventory (Gardner
1990, Kremer et al. 2016, Dodin et al. 2023). Many aspects of forecasting are well studied,
especially around model learning and selection. However, details on model deployment are
scant. In this section, we first provide some related methodology papers, then compare
direct and iterative forecasting, discuss feature selection, and conclude with papers on the
implementation of demand forecasting in organizations. A summary of works in demand

forecasting like ours is provided in Table 1.

Table 1. Summary of Related Research Papers with a Focus on Demand Forecasting

Reference Input Model Evaluation Metric

Dodin et al. (2023) Lagged demands, demand statis- Improved Light GBM, Elas- RMSSE
tics, seasonality components, tic Net
region and month index, average
age of shipped products

Qi et al. (2023) Lagged demand, inventory End-to-end Model Stockout rate,
(Dynamic Programming, turnover rate, total
RNN, MLP) inventory manage-

ment, holding, and
stockout costs

Deng et al. (2023) Lagged demand, inventory, DeepAR, N-BEATS, WMAPE
among others Prophet
Makridakis et al. M-3 data MLP, BNN, RBF, GRNN, sMAPE, MASE
(2018) KNN, CART, SVR, GP,
RNN, LSTM, SES, ETS
Sagaert et al. (2018) Lagged demand, macroeconomic LASSO Regression MAPE
indicators
Hamzacebi et al. Lagged demand Artificial Neural Networks SAE, SSE
(2009) (ANN)
Marcellino et al. Lagged demand Linear models MSFE
(2006)
Gardner (1990) Lagged demand Exponential-smoothing Investment and

Model (ETS) delay time
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Forecasting Models

The methodology frameworks for demand forecasting have significantly evolved over the
last few decades. There is a large body of literature on demand pattern recognition and
prediction. Traditionally, classic time-series models such as AR, MA, ARMA, ARIMA, and
ETS were used for demand forecasting tasks, which only use lagged demands as the input
(Hyndman and Athanasopoulos 2018). Today, ML models can accommodate nonlinearity and
handle a broader range of inputs, such as unstructured and high-dimensional data of various
types. In recent years, we have seen huge potential of ML algorithms in demand forecasting
tasks because of their better data-fitting capabilities. Some recent works that are similar to
our goals are as follows: Deng et al. (2023) outlined a comprehensive omnichannel retail
infrastructure by Alibaba, which was a 2022 Edelman Award finalist. The infrastructure
integrates demand forecasting with inventory management and price optimization, driven
by product recommendations. Their implementation leverages deep learning models like
DeepAR (Salinas et al. 2017), Prophet (Taylor and Letham 2018), Wavenet (Oord et al.
2016), and N-BEATS (Oreshkin et al. 2019) to generate demand forecasts. Dodin et al.
(2023) showcased a pragmatic application of Light GBM models in forecasting the demand of
parts at Bombardier. Ferreira et al. (2016) used a regression tree-based model for demand
forecasting in the pipeline for price optimization.

The Makridakis (M-series) competition has been a key test bed for evaluating different
forecasting models, such as multilayer perceptron, Bayesian neural networks, radial basis
functions, generalized regression neural networks (also called kernel regression), K-nearest
neighbor regression, classification and regression trees, support vector regression, and
Gaussian processes (Makridakis and Hibon 2000; Ahmed et al. 2010; Makridakis et al. 2018,
2021). Light GBM (Ke et al. 2017), which is an advanced tree-based model, is notable for
its fast and efficient training and prediction and was used by all of the top-50 performers
in the M-5 competition (Makridakis et al. 2022). Light GBM’s accuracy has been validated
by several other research studies for predictive modeling (Bandara et al. 2020, Zhang et al.
2020, Deng et al. 2021). Motivated by these studies, results from M-5 competition, and our
own experiments, we adopted the Light GBM algorithm for our task.

Direct vs. Iterative Forecasting
Conventionally, two methods exist for regression-based time series prediction: (i) direct and

(ii) iterated forecasting method. The direct method uses separate models for each forecast
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horizon, whereas the iterated method predicts the next period and uses that estimate for
subsequent forecasts. The choice between methods involves a bias-variance trade-off and
depends on the unknown population projection (Findley 1983). Theoretically, the direct
method yields a lower mean squared error, but its superiority in practice is not guaranteed
(McElroy 2015). Empirical evidence in literature is conflicting: Marcellino et al. (2006)
found the iterative method superior for long-lag specifications and longer horizons, whereas
Hamzagebi et al. (2009) observed better performance with the direct method using artificial
neural networks. For more related works, we refer interested readers to these publications’
literature reviews. With experimentation, we discovered the superiority of the iterated
method in our case and thus use forecasted demand as a lagged input for subsequent

predictions.

Feature Selection

Incorporating additional data into ML-based forecasting models is beneficial to improve
forecasting performance. For instance, Sagaert et al. (2018) leverage a broad set of macroe-
conomic indicators from the Federal Reserve Economic Data (FRED) in a LASSO regression
model to improve tactical forecasting accuracy. In supply chain, private data create infor-
mation asymmetry; lack of information sharing hinders the ability to adequately harmonize
manufacturers’ activities to align with customers (Simatupang and Sridharan 2002). Infor-
mation shared by suppliers and customers can also improve accuracy of demand forecasting.
Hartzel and Wood (2017) show that demand forecasts benefit heavily from point-of-sale
reporting. Kurtulug et al. (2012) show that such forecast (called “collaborative forecast”)
can be helpful for customers as well as suppliers, depending on the contractual obligations
of both parties. Under the Newsvendor model setting, Taylor and Xiao (2010) show that
the manufacturer benefits from selling to a better-forecasting retailer if and only if the
retailer is already a good forecaster. These studies guide us to use demand and inventory
information reported by our supply chain partners as part of the input to our forecasting
model to further improve the forecasting performance.

Although some studies report on ML-based implementation of demand forecasting models
in companies (Ferreira et al. 2016, Dodin et al. 2023), there are few detailed discussions
on project management, deployment pipelines, and continuous performance monitoring,
specifically in the domain of demand forecasting. Based on our previous works (Curtland

et al. 2022) and concepts of MLOps (Zaharia et al. 2018), our work will share generalizable
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lessons on management strategies for the enterprise-scale implementation of ML-based
demand forecasting. We believe our project management strategy will be valuable to readers,

as such issues are nontrivial in practice.

Project Management Strategy

Large-scale projects with numerous collaborators and users necessitate robust coordination
and maintenance tools. To enhance value creation and streamline the entire ML project
life cycle, data scientists and managers repurposed several DevOps (Development and
Operations) concepts (Chen et al. 2020) as MLOps. As outlined by John et al. (2021), the
MLOps framework proves indispensable for tracking of data for ML development, validation
of ML models, release of ML models, and storage of serialized models for replication and
future applications.

Most ML enhancements are driven by experimentation. This involves exploring multiple
datasets, variable transformations, model architectures, software libraries, and more. These
experiments not only have diverse inputs and outputs but must also be efficiently timed.
Given the reliance of model performance on input data and training, reproducibility becomes
paramount. In our project, before each month starts, one model gets selected for deployment
and producing ML forecasts to support operational decisions. Yet, experimentation persists
to further refine our models for future months. We show our project management strategy
through a flowchart in Figure 2.

We adopted various open-source tools in our project management strategy:

1. Experimentation and reproducibility: MLflow is an open-source ML platform
(Zaharia et al. 2018) that tackles challenges linked to experimentation, reproducibility, and
deployment. It provides extensive experiment tracking, covering parameters, metrics, code,
and data, which are accessible through an API and an interactive dashboard. We opted
for MLflow because of its self-hosting capabilities, which streamlined our workflow at no
additional cost to HP.

2. Documenting results: Jupyter Notebooks aid reproducibility, allowing detailed
annotations on processes, inputs, and outputs using markdown cells. These notebooks
can be parameterized, turning their execution into function calls with the papermill
library, a tool that enables operating one notebook from another notebook similar to a

7

function call. We incorporated a keyword, such as “Monkey,” into our codebase to facilitate

quick navigation for necessary adjustments before rerunning routine scripts. This approach
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Figure 2. (Color online) Project Management for Continuous Deployment Pipeline of Our ML Forecasting Efforts

simplifies the identification of key areas for updates, making recurring tasks like monthly
time-series forecasting more efficient and automated. By combining this with parameterized
notebooks, we were able to expedite the early stages of coding and experimentation. Once
operational workflows moved to production, these processes were fully automated using the
same parameterized notebooks.

3. Model serialization: Once we move experimental models to production, serializing
and storing saved models and parameters as artifacts for future reference becomes essential,
which is where MLflow becomes indispensable again. The serialized models can be used later
for warm-starting future training, which reduces computational time and effort. They can
also be used for comparing accuracy between experimentation and production. Furthermore,
results from the serialized models can be reproduced when necessary.

4. Data storage: Data storage demanded substantial disk space. Initially, we used
Python’s Pickle for data snapshots. However, because of fundamental issues with Pickle,

such as corruption from version changes and ballooning file sizes, we transitioned to Apache
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Feather. Feather boasts a powerful compression algorithm resulting in vastly reduced file
sizes compared with CSV and native compatibility with libraries like pandas. Crucially,
Feather maintains forward and backward compatibility, ensuring hassle-free file accessibility
across versions.

5. Rapid testing with FLAML: Our expansive data set made it impractical to run full
experiments each time. Thus, preliminary assessments were vital. We relied on FLAML’s
efficient search and evaluation mechanisms, leveraging its automatic Bayesian hyperpa-
rameter search and cross-validation. It is designed to minimize computational costs while
gradually transitioning from cheap, inaccurate trials to more expensive, accurate ones by
iteratively optimizing learner selection, hyperparameters, and sample size. This allowed for
targeted improvements within our time budgets, ensuring only the most promising strategies
proceeded to in-depth testing. Such rapid tests were foundational; more exhaustive experi-
mentation followed once a direction was determined, culminating in integrating findings

into our primary model, as presented in our Iterative Forecasting Algorithm (Algorithm

A1)

Problem Formulation and Methodology

We now describe our problem setting and solution methodology. Our work addresses the
problem of predicting demand for a product p in a specific country c at time ¢. Given a data
set of historical demand data among others, our goal is to train a model that can forecast
the demand for future time periods. The historical data include information about the
actual demand ¥, ., and a set of associated features X, . ,. These features represent various
aspects of the time, market, and product, as well as lagged demand for up to 15 months
before the forecasting month. Complete model formulation is provided in the appendix.
Details of the model inputs are provided in Table 2 later in this section.

To select our model, we rigorously evaluated many algorithms, including XGBoost,
Light GBM, Prophet, ARIMAX, ETS, and multilayer perceptrons, using the Python darts
library for a unified and methodologically consistent comparisons (Herzen et al. 2022).
Our empirical evaluations, emphasizing predictive accuracy and computational efficiency,
demonstrated clear superiority of tree-based models, specifically Light GBM (Ke et al. 2017).
These models excel at capturing nonlinear relationships and complex data structures, making
them effective for demand forecasting, while offering interpretability that outperforms

other algorithms, with straightforward parameter optimization and a reduced memory
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footprint that simplify generalization and expedite training at scale. Results from the M-5
competition discussed previously affirmed our choice of Light GBM because of its proven

effectiveness with data sets similar to ours in structure and complexity.

Iterative Forecasting Algorithm

Our Iterative Forecasting Algorithm is outlined in Algorithm A.1 in the appendix. It uses the
Light GBM model as its core predictive engine, although it is adaptable to other algorithms.
The model begins by preprocessing the data, which includes data cleaning and feature
engineering. It is designed to forecast demand iteratively over a time window 7', which allows
for dynamically updating forecasts. We optimize our Light GBM model’s hyperparameters
using Hyperopt, a library that efficiently explores both discrete and continuous parameter
spaces (Bergstra et al. 2013). Typical hyperparameters and their suggested ranges are
provided in the appendix of this paper.

Using the last month’s data for validation, we use Hyperopt’s Tree of Parzen Estimators
(TPE) algorithm to navigate this parameter space. This Bayesian hyperparameter optimiza-
tion allows for faster convergence to optimal configurations by focusing on hyperparameter
values that maximize performance on the validation set. By leveraging Hyperopt’s capa-
bilities, we can balance exploration of the search space with the exploitation of promising
configurations, ensuring our Light GBM model is finely tuned for optimal performance.

Our approach allows us to capture both the seasonality and trends in the demand while
benefiting from the efficiency and scalability of Light GBM. Moreover, the iterative nature
of this algorithm allows for frequent model updating, leveraging the most recent one-month
data for cross-validation. This ensures that the model stays responsive to any significant
changes in the underlying data patterns. Storing the serialized model in MLFlow, we are
able to ensure repeatability and continuity for future efforts, detailed previously in the

Project Management Strategy section.

Model Input Features

Our ML models surpass conventional time-series approaches by integrating diverse fea-
tures—categorical, numeric, and beyond—that not only capture historical demand but also
illuminate the complex dynamics of demand generation and fulfillment. These features are

listed in the following section and summarized in Table 2 for ease of reference.



Harshvardhan et al.: Print Demand Forecasting with Machine Learning at HP Inc.
14 Article submitted to Interfaces; manuscript no. OM-04-2024-0126

Types of Features.

1. Lag demands: Demands from the previous m months are factored in, with m =15 for
products with intermittent demand and annual buying cycles.

2. Rolling demand features: These are statistical measures—mean, coefficient of variation,
and outlier counts—computed over rolling windows of 3, 6, and 12 months, capturing both
recency and variability in demand.

3. Product- and geography-based statistics: Summary statistics are categorized by product
and geography to model unique trends and attributes within these dimensions.

4. Seasonal fluctuations: Binary indicators for each fiscal quarter are included to capture
seasonal demand patterns. A monthly integer representing month of the quarter is also
included.

5. Product life cycle: Calculated as (M —m)/M, where M is the total expected lifetime of
product and m is the current forecasting month, this feature considers a product’s remaining
lifespan, enriching the model’s temporal context. Typically, products introduced to the
market experience a surge in demand initially, attributable to their innovative features and
promotional efforts, followed by a gradual decline in sales as they progress through their
product life cycle.

6. Channel metrics: Features such as “channel partner inventory” and “sell-through”
provide a nuanced understanding of real-time market demand and potential future orders
with direct inputs from our distribution channel partners (customers in a B2B setting).
Channel partner inventory refers to the SKU-level inventory that our channel partners
report monthly, and sell-through represents the sales by our partners to their customers.

Feature Selection. We considered two algorithms for our feature selection strategy: the
Fast AI method based on Howard (2019) and the Quadratic Programming Feature Selection
(QPFS) technique as proposed by Rodriguez-Lujan et al. (2010). Fast AI’s approach involves
generating a correlation matrix followed by a dendrogram of all features. This guides the
systematic pruning of correlated features, thus honing the feature set down to those that are
most informative. QPFS, on the other hand, uses quadratic programming to balance feature
importance against redundancy. From our comparative analysis between these methods, we
discovered that QPFS produced high variance in each cycle’s feature importance results,
whereas Fast Al method led to a stable set of features. Given this, we chose the Fast Al

method for our production code.
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Table 2. The Forecasting Model Incorporates over 100 Input Features, Including Various Calculated Statistics
Feature name Description Granularity Utility for forecasting
Lagged demand Size of demand from previous Month () Captures influence of past
m months; m varies per product on future trends
group
Rolling demand Statistics of demands within n- Month () Assesses recent trend, vari-
features month rolling window (mean, ability
coefficient of variation, outliers)
Product-based  Mean and coefficient of variation SKU (p) Specific trends in product
statistics of lagged demand and rolling fea- categories
tures, per product category
Geography- Mean and coefficient of variation Country (c) Location-specific trends

based statistics of lagged demand and rolling fea-
tures, per country

Seasonal fluctua- Binary indicator for each fiscal Month () Captures seasonal effects
tion quarter and integer month within
a quarter
Product life Proportion of product life cycle SKU, country (p,c¢) Stage of the product in its
cycle left, calculated as (M —m)/M life cycle
Channel partner Inventory reported by distribu- SKU, country, Indicates potential reorder-
inventory tion channel partners month (p,c,t) ing
Sell-through Sales to distribution channel part- SKU, country, Reflection of downstream
ners month (p,c,t) demand (to channel part-

ners’ customers)

Performance Evaluation and Results

The ultimate adoption of a new ML forecasting pipeline hinges on its accuracy. We
validate the performance of ML-based forecasts’ performance against existing statistical and
consensus forecasts, serving two critical purposes. First, before enterprise-wide deployment
across products and geographies, we must demonstrate that the ML pipeline’s accuracy
and reliability meet or exceed the accuracy and reliability of current methods. Second,
we must also evaluate the judicious use of the additional project management machinery,
which requires significant investment (see Figure 2). Successfully achieving the first goal

justifies the allocation of these additional resources.

Evaluation Metrics

We use three key metrics to evaluate our forecasts: bias, weighted mean absolute percentage
error (WMAPE), and root-mean-squared error (RMSE), all defined in the appendix. RMSE,
our preferred metric for MLL model training, is symmetric and continuously differentiable.
It balances sensitivity to larger errors with scale dependency, making it valuable for
emphasizing significant deviations. However, because of RMSE’s sensitivity to outliers,
models trained with this metric may prioritize minimizing larger errors, which in our case,

has occasionally resulted in underforecasting. Planners and managers primarily use bias
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and wMAPE as key performance indicators (KPIs) because of their ease of interpretation
and actionability. For a comprehensive comparison of these and other accuracy metrics,
including their application in M-3 forecasting, we refer readers to Hyndman and Koehler
(2006).

These metrics are calculated over a specified number of months, denoted as CM-k, where
k represents the number of months. For a given month ¢, the k-month cumulative actuals

t+k—1

. t+k—1 ~
are calculated as > .7 y;, whereas the cumulative forecasts are >,

.~ U;. For example,
three-month cumulative forecast (CM3) starting in January would sum the forecasts for
January, February, and March. The choice of cumulative forecast horizons depends on
specific supply chain lengths and decision-making requirements. Measuring and improving
the forecast over different lead time horizons is important for practical business reasons.
Supply chains have specific lead times for manufacturing and shipping products, and
businesses maintain inventory close to customers to manage demand variability during these
periods. CM1, CM3, and CM6 forecasts are commonly reported, with CM3 often being the
most critical because of its alignment with the typical three-month production lead time.
On the other hand, CM1 provides immediate feedback on short-term operations, whereas
CMG6 offers a longer-term outlook. Cumulative forecasts are preferred over point forecasts
also because they more effectively manage lead time variability. In an optimized supply
chain, this approach allows for better inventory pooling and more accurate adjustment of

factory capacity based on appropriate lead times and forecast performance.

Results

We present forecasting performance for a select business segment (1,484 products) from all
three methods: consensus (ConsFcst), statistical (StatFest), and ML (MLFcst), evaluated
at cumulative horizons of one (CM1), three (CM3), and six (CM6) months. Although the
scales have been adjusted for anonymity, the observed trends remain the same. Results
from all product lines are not presented because of data sensitivity, and accuracy results
vary across business segments.

A summary of accuracy results is provided in Table 3. These metrics are also presented
as a dumbbell plot in Figure 3 with center points being 12-month averages and whiskers
indicating one standard deviation. Additionally, Figure 4 visualizes these metrics over all
12 months, highlighting the monthly accuracy trends for each method. Finally, a statistical

comparison of metrics over 12 months using paired t-test is presented in Table 4.
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Figure 3.  (Color online) Dumbbell Plot Visualizing the Mean (Center Point) and One Standard Deviation (Vertical Lines)

of Bias, RMSE, and wMAPE for Three Forecasting Methods (Consensus, Machine Learning, and Statistical) over
Cumulative Forecast Horizons of One Month (CM1), Three Months (CM3), and Six Months (CM6)

Note. Each color represents a different forecasting method, illustrating the variability and central tendency of the

forecast accuracy metrics across different periods.

Table 3. Forecasting Accuracy Metrics (Bias, RMSE, and wMAPE) for Cumulative Forecast Horizons (CM1, CM3, CM6)
with Mean (Standard Deviation)

Model | oM CM3 | CM6

Metric | Bias RMSE wMAPE| Bias RMSE wMAPE| Bias RMSE wMAPE

Consensus | —3.08%  13.09 15.92% | —1.08% 32.76 9.25% 2.42% 57.29 9.08%
(7.05%) (3.38) (5.62%) | (4.68%) (6.66) (3.28%) | (3.96%) (11.51) (2.64%)

ML 1.17% 11.87 12.33% 1.25%  31.03 5.25% 3.75% 60.28 5.08%
(8.92%) (4.87) (6.69%) | (7.34%) (9.43) (4.39%) | (5.26%) (16.83) (2.91%)

Statistical 2.67% 13.71 16.75% 1.08% 34.55 9.33% 2.08% 62.47 9.17%
(10.14%) (2.80) (4.99%) | (5.00%) (6.03) (3.42%) | (5.38%) (9.08) (1.90%)

The ML forecast method demonstrates considerable strengths in its forecasting accuracy
as compared with the statistical method, particularly in the metrics of wMAPE and RMSE.
We observe that wMAPE for ML forecast is better than the other two in all three cumulative

periods. In fact, at CM3 and CM6 (i.e., for longer-range forecasts), our model has a
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Figure 4. (Color online) Bias, WMAPE, and RMSE Metrics over 12 Months Show That ML Model Is Consistently Among
the Top Performers of the Three Models

Note. CM1 is point forecast, whereas CM3 and CM6 are three- and six-month cumulative forecasts, respectively.

Table 4. Forecasting Accuracy Metrics: Bias, WMAPE, and RMSE Comparison for CONS, ML, and STAT Methods

Cumulative Comparison Bias RMSE WMAPE
CM1 CONS vs ML —1.295 (0.209) 0.716 (0.482) 1.421 (0.169)
STAT vs ML 0.385 (0.704)  1.128 (0.272) 1.832 (0.080)
CM3 CONS vs ML —0.929 (0.363) 0.518 (0.610) 2.528 (0.019)
STAT vs ML —0.065 (0.949) 1.089 (0.288) 2.541 (0.019)
CM6 CONS vs ML —0.701 (0.490) —0.507 (0.617) 3.526 (0.002)
STAT vs ML —0.767 (0.451) 0.399 (0.694) 4.074 (0.001)

Note. The accompanying table presents t-statistics and p-values (in parentheses) for an in-depth assessment across

various cumulative forecast horizons.

wMAPE almost half of the wMAPE of the other two methods. When looking at statistically
significant differences, we find statistically significant difference between ML and STAT
models with positive t-statistic and p-values less than 0.05. These findings strongly suggest
the statistical superiority of the ML forecast in wMAPE, further demonstrating the model’s
alignment with HP’s business objectives, as wWMAPE is a business KPI. The higher accuracy
of the MLL model in wMAPE is particularly surprising because it was trained with RMSE
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as the loss function. In the case of RMSE, which is sensitive to large forecast errors, the ML
forecast again proves to be more adept than others, although not statistically significant.
However, the ML forecast does not consistently dominate across all metrics and com-
parisons. When considering bias, which reflects the systematic error in forecasts (either
as overestimation or underestimation), the ML method does not exhibit a statistically
significant difference from the statistical or consensus forecasts in any of the cumulative
periods (CM1, CM3, and CM6), as evidenced by p-values greater than 0.05. Our model
exhibits higher bias compared with the consensus and statistical models. We observed a
strong tendency for the ML model to underforecast, particularly over longer time horizons.
This issue appears to be influenced by the intermittent demand of many products, where
the model occasionally learns to forecast zero incorrectly. Although this may explain the
underforecasting, further investigation is required to definitively identify the root cause.
These results suggest that, in certain scenarios—particularly those involving longer-term
predictions—the Consensus forecast may provide more accurate outcomes than our method.
This contrast underscores the ML forecast’s strengths in specific contexts, guiding the
modeling team in targeting improvements and enabling the business team to select the
best-performing model for each product and country. By acting as a “human in the loop,”
the business team plays a crucial role in validating and verifying forecasts generated by
the automated model. The data in Table 4 and the trends in Figure 4 collectively bolster
the case for adopting the ML model alongside the statistical and consensus models at HP,

contributing to an integrated effort aimed at improving overall forecasting performance.

Dashboard of Results

As an essential advancement in disseminating forecasting analytics, the incorporation of
analytical dashboards facilitates sharing results with a wider audience, including planners
and decision makers. This powerful tool not only exhibits the performance of various
models but also provides an avenue for scrutinizing their historical accuracies and pertinent
details. Constructed with customizable KPIs, the dashboard extends the ability to inspect
product hierarchies from different lenses, thereby promoting informed business strategies
and policies. The dashboard presents bias, wMAPE, and RMSE to compare historical
performance of algorithms. To assist planners in selecting the best model, we create a
heat map of best forecast as measured by wMAPE. This heat map covers all HP Print
product categories by time period, enabling planners to visualize the relative performance

of different methods over time.
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Lessons Learned and Business Implications

Implementing a global-scale ML-based demand forecasting system at HP revealed critical
lessons and challenges, transforming the way forecasts are integrated into business processes.
Work on the project started in 2019 and remained in pilot phase for a year. In 2020, the
results were published in the standard KPI dashboards and available for manual use within
the Statistical and Consensus forecasting modeling processes depicted in Figure 1. By
summer 2023, SKU-level forecasts for all Print products across geographies were fully
integrated into the data pipeline for business forecasting. Inclusion of the analytical forecast
in the business KPI dashboards led to wide-scale adoption of our work.

While previous efforts to implement ML-based models were scattered and unsuccessful,
our solution was implemented at scale because of its inclusive approach. First, our solution
performed well across HP’s Print portfolio. Second, early collaboration with the business
team helped preemptively address change management challenges that often hinder large-
scale projects. A unified, holistic approach that used only one model architecture with
various data sources proved essential in overcoming the complexities of enterprise-scale
forecasting. Data quality is critical in machine learning, and HP’s simultaneous digital
transformation presented both challenges and opportunities. Key issues, such as missing
data and unlinked data sets, required meticulous reconciliation to ensure the accuracy
and reliability of our forecasts. A key challenge was the integration of “soft data,” which
involved manual analysis. Successfully overcoming these hurdles was key to improving the
accuracy and reliability of our forecasting models.

MLOps, enabled by MLFlow, streamlined the development life cycle by automating
key processes, facilitating experiment tracking, and ensuring consistent deployment of the
latest and most accurate models. This enabled linking analysis to outputs and ensured
comprehensive documentation. Because of the scale of implementation, computational
resource optimization became necessary. This involved using high-performance workstations
and adopting efficient data storage and retrieval methods, like the Apache Feather format,
which provided significant improvements in data handling and processing efficiency.

Adopting Light GBM was crucial for its ability to handle large data sets and complex
patterns at speed. It demonstrated remarkable adaptability in handling market fluctuations,

including during the pandemic’s supply-constrained environment. Incorporating our signal
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into the standard business process in conjunction with effective dashboard visualizations
and KPIs enabled successful implementation.

An important aspect of our solution is that our final forecast is not confined to being
either human- or machine-produced. Our human-in-the-loop architecture ensures that
human forecasters can apply contextual knowledge, adjusting plans independent of modeling
when necessary to reflect market nuances. This synergy between machine precision and
human insight has improved forecast accuracy and decision making. As of August 2024,
some downstream users are also using our ML forecasts for ensembling with their own
forecasts. Over time, we expect our solution to improve by supporting the human with
prescriptive drift and anomaly detection, along with Al-enhanced dashboards. This will
build upon the existing explainability and causality capabilities of the solution, creating
better insight generation and enhancing model itself.

In summary, our experience at HP underscores the importance of a well-integrated,
adaptive, ML-based approach in demand forecasting. Addressing these challenges was
pivotal in optimizing the ML models for supply chain management, leading to more
efficient decision making and operational management. The insights gleaned offer a valuable
template for business leaders facing similar challenges in large-scale demand forecasting.
Our collaborative, agile development model is expected to further improve accuracy as we

implement our backlog of modeling ideas.

Concluding Remarks

In this paper, we detailed our implementation of an MIL-based demand forecasting system at
HP, implemented for all Print products worldwide. Our iterative forecasting algorithm and
project management strategy are modular and adaptable to different industries in which
demand forecasting and supply chain optimization are crucial. Our approach, combining
machine learning with a human-in-the-loop framework, presents a novel and scalable solution
to demand forecasting challenges that traditional time-series models could not adequately
address. Our work improved forecast accuracy and provided a robust system capable of
adapting to market fluctuations and supply chain disruptions. Key insights highlight the
importance of computational resources, robust data management, and a proactive stance
toward market changes and data quality. Downstream forecasters are now incorporating

our ML forecasts into their ensemble models.
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Our work at HP has resulted in tangible improvements in supply chain management
and inventory optimization, reducing forecast errors and leading to cost savings and more
accurate production planning. Our experience serves as a blueprint for other companies in
the technology and manufacturing sectors facing similar challenges in demand forecasting.
This approach not only facilitates more accurate demand predictions but also fosters an

agile and responsive business environment.
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Appendix

Problem Formulation

We formulate the problem as a supervised learning task in which we aim to minimize the forecasting loss over

the data set D, consisting of pairs of input features X, ., and corresponding demands values y;11 .. That is,

D == {(Xt,c,zn yt+1,c,p) : chpv tfirst S t < tnow}7 (A]-)

where ty;,.5; is the first period when we have enough observations to create all features, especially the lagged

features. The training process minimizes the forecasting loss (RMSE):

(f1D) =\ Ex yen (F(X) )7, (A2)

in addition to necessary regularization terms.
In this context, our model f(-) learns to predict future demand based on the input features. Once trained,
the model can be applied to forecast demand for future time periods t > t,,0.,-

We use F; ., € R” to represent forecasts for T' periods starting with ¢,,,,,:

szc,p = (gtJrl,c,pa T a?)tJrT,c,p)' (A'3)
Iterative Forecasting Algorithm

Here, we describe our iterative forecasting algorithm. For each time step t,., the algorithm constructs a
training data set D, using all available data up to that point in time. Identified hyperparameters are used
with D, to train the Light GBM model f(-), which is optimized to minimize the RMSE. Once trained, the
model generates T' future forecasts for each time step t,. The Light GBM model is then either incrementally
updated (i.e., warm-started from best results from last month) or retrained from scratch, providing flexibility

in handling significant changes in underlying data distribution.

Optimizing Light GBM Hyperparameters with Hyperopt

Hyperopt (https://github.com/hyperopt/hyperopt) is a powerful Python library for hyperparameter
optimization, supporting several machine learning models, including Light GBM. In this work, we leverage
Hyperopt to fine-tune key parameters of our Light GBM model for enhanced performance. Specifically, we
tune key parameters including

1. Learning rate: controls how much to adjust the model with each step, with a range between 0.1 and 1;

2. Maximum tree depth: dictates the maximum depth of each decision tree, explored between 10 and
100;

3. Regularization parameters: L; and L, regularization terms help prevent overfitting, with values
explored between 0 and 1;

4. Minimum child weight: specifies the minimum sum of instance weights needed in a child, ranging
from 1 to 50;

5. Subsample and column-sample proportion: controls the fraction of samples and features used per

tree, ranging from 0.5 to 1.
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Algorithm A.1 Enhanced Training and Forecasting Algorithm with Light GBM

1: Preprocess the data: Data cleaning and feature engineering.

2: Determine optimal hyperparameters: Use grid search or random search for the Light GBM model.

3: Initialize forecast horizon T (e.g., 7).

4: for t, in (tgrst : tnow) dO

5 Create the training data:

Da = {(Xt,C,p7 yt,c,p) : vcap; LLﬁrst <t< ta}
6:  Perform time-series cross-validation on D, and train the LightGBM model f(-) with optimal hyperpa-
rameters, minimizing loss (RMSE):
2
U(f1D) = \/Exyen (F(X) )
7: With the fitted model, create T forecasts for t, +1 to t, + 1"
Fz;,e,p = (f(XtQJrl,c,p)’ f(Xt(H»?,C,p)a e 7f(Xta+T,c,p)>
8:  Update the Light GBM model incrementally by warm starting from last month’s best results if possible,
or retrain it from scratch.

9: end for

10: Perform backtesting: Apply the trained model to a historical data set Dyistorical t0 simulate past
predictions. Evaluate its performance using appropriate metrics (e.g., RMSE).
11: Store forecasts: Save the generated forecasts F{ _  to a dedicated database or file storage for future
evaluation, comparison, or direct usage.

12: Log model: Serialize the Light GBM model, hyperparameters, and performance metrics for future

reference or retraining using MLFlow.

Evaluation Metrics

Let n represent the number of data points; y;, the actual value; and ¢;, the predicted value.

Bias measures the weighted percentage error in forecasts, signified by a positive or negative value indicating

over- or underforecasting, respectively. Bias is calculated using the formula

Bias = i %% ; gL
1 i

wMAPFE represents the weighted mean of absolute percentage errors, a metric easily understood even by

nontechnical stakeholders as percentage deviation from actuals. It is expressed as

wMAPE = Zi:l
Zi:1 Yi

"gz*yz|
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RMSE is defined as

RMSE =
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