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Abstract

Gaussian process (GP) based statistical surrogates are popular, inexpensive substi-
tutes for emulating the outputs of expensive computer models that simulate real-world
phenomena or complex systems. Here, we discuss the evolution of dynamic GP model
— a computationally efficient statistical surrogate for a computer simulator with time
series outputs. The main idea is to use a convolution of standard GP models, where
the weights are guided by a singular value decomposition (SVD) of the response matrix
over the time component. The dynamic GP model also adopts a localized modeling
approach for building a statistical model for large datasets.

In this chapter, we use several popular test function based computer simulators to
illustrate the evolution of dynamic GP models. We also use this model for predicting
the coverage of Malaria vaccine worldwide. Malaria is still affecting more than eighty
countries concentrated in the tropical belt. In 2019 alone, it was the cause of more
than 435,000 deaths worldwide. The malice is easy to cure if diagnosed in time, but the
common symptoms make it difficult. We focus on a recently discovered reliable vaccine
called Mos-Quirix (RTS,S) which is currently going under human trials. With the help
of publicly available data on dosages, efficacy, disease incidence and communicability
of other vaccines obtained from the World Health Organisation, we predict vaccine
coverage for 78 Malaria-prone countries.

1 Introduction

Computer simulators are widely used to understand complex physical systems in many areas

such as aerospace, renewable energy, climate modelling, and manufacturing. For example,

Greenberg (1979) developed a finite volume community ocean model (FVCOM) for simulat-

ing the flow of water in the Bay of Fundy; Bower et al. (2006) discussed the formation of

galaxies using a simulator called GALFORM; Bayarri et al. (2009) used a simulator called

TITAN2D for modelling the maximum volcanic eruption flow height; and Zhang et al. (2018)
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used a TDB simulator to model the population growth of European red mites. Realistic com-

puter simulators can also be computationally expensive to run, and thus statistical surrogates

used as an inexpensive substitute for a deeper understanding of the underlying phenomena.

Sacks et al. (1989) proposed using a realization of the Gaussian process (GP) model as a

surrogate for such simulator outputs.

The types of simulator outputs structures dealt with are as varied as the applications.

One is faced with scalar, multivariate, functional, time series and spatial-temporal data,

to name a few. In this chapter, we discuss the evolution of GP-based surrogate models

for computer simulators with time series outputs, which we refer to as dynamic computer

simulators. Such simulators arise in various application, for example, rainfall-runoff model

(Conti et al., 2009), vehicle suspension system (Bayarri et al., 2007), and TDB model (Zhang

et al., 2018).

The emulation of dynamic computer simulators has been considered by many (Kennedy

and O’Hagan, 2001; Stein, 2005; Bayarri et al., 2007; Higdon et al., 2008; Conti et al., 2009;

Liu and West, 2009; Farah et al., 2014; Hung et al., 2015). In this chapter, we highlight the

singular value decomposition (SVD)-based GP models, which was originally introduced by

Higdon et al. (2008) for computer model calibration with high-dimensional outputs. How-

ever, Zhang et al. (2018) generalized it further for time-series responses and developed the

empirical Bayesian inference for large-scale computer simulators.

Fitting GP models requires the inversion of N × N spatial correlation matrices, which

gets prohibitive if N (the sample size) becomes large. In other words, fitting GP models

over the entire training set can often be computationally infeasible for large-scale dynamic

computer experiments involving thousands of training points. A naive popular approach

is to build localized models for prediction in the big data context. To search for the most

relevant data for local neighborhood in a more intelligent way, Emery (2009) built a local

neighborhood by sequentially including data that make the kriging variance decrease more.

Gramacy and Apley (2015) improved the prediction accuracy by using a sequential greedy

algorithm and an optimality criterion for finding a non-trivial local neighborhood set, and

Zhang et al. (2018) further extended the idea for dynamic simulator outputs.

In this chapter, we illustrate the implementation of dynamic svd-based GP model for
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several test function based simulator outputs, and a real-life modeling problem where the

objective is to predict the usage of a new Malaria vaccine. Malaria is a mosquito-borne disease

caused by a Plasmodium, a malarial parasite. Although Malaria is not life-threatening by

its nature, if left untreated, it can cause severe illness and prove to be fatal. The disease

was eliminated from American and European continents by first half of twentieth century

but is still very common in South Asia and Sub-Saharan Africa. In 2017 alone, there were

more than 219 million cases of Malaria and resulted in deaths of more than 435,000 people

worldwide (World Health Organisation, 2019).

In February 2019, a new Malaria vaccine RTS,S - known by the trade name Mos-Quirix -

was approved for human trials in three countries - Ghana, Malawi and Kenya - coordinated

by WHO. The study is expected to get over by December 2022. However, in last few months,

several pharmaceutical majors have begun showing interest in the vaccine’s mass production,

and the investors want to estimate the coverage ratio - defined by the vaccine population count

divided by the total population.

The chapter is outlined as follows. In Section 2, we start with the standard GP model for

scalar valued response and present the dynamic SVD-based GP model. Further we discuss

the localized dynamic GP model for handling big data. Section 3 explains how dynamic GP

model is used for predicting vaccination coverage, with model inputs and built-in R packages.

They are illustrated with model outputs on a world map. Finally, concluding remarks and

recommendations are suggested in Section 4.

2 Evolution of Dynamic GP Model

In this section, we present a sequence of statistical surrogate models starting from the most

basic GP model which emulates deterministic computer simulators returning scalar outputs,

to dynamic GP model that acts as a surrogate to time-series valued simulators. The models

are supported by a brief explanation of their theoretical foundations, an associated example

and R implementation.
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2.1 Basic GP Model

Gaussian process models are immensely popular in computer experiment literature for em-

ulating computer simulator outputs. In one of the pioneering research, Sacks et al. (1989)

suggested using realizations of Gaussian stochastic process to model deterministic scalar-

valued simulator outputs. However, the notion of such statistical models originate from the

kriging literature in Geostatistics.

Let the training data consist of d-dimensional input and 1-dimensional output of the

computer simulator, denoted by xi = (xi1, xi2, . . . , xid) and yi = y(xi), respectively. Then,

the GP model is written as

yi = µ+ z(xi), i = 1, 2, . . . , n, (1)

where µ is the overall mean, and {z(x), x ∈ [0, 1]d} ∼ GP (0, σ2
zR(, )) with E(z(x)) = 0,

V ar(z(x)) = σ2
z , and Cov(z(xi), z(xj)) = σ2

zR(xi, xj) where R(, ) is a positive definite cor-

relation function. Then, any finite subset of variables {z(x1), z(x2), ..., z(xn)}, for n ≥

1, will jointly follow multivariate normal distribution. That is, Y = (y1, y2, . . . , yn)′ ∼

MVN(µ1n, σ
2
zRn), where 1n is an n× 1 vector of all 1’s, and Rn is an n× n correlation ma-

trix with (i, j)-th element given by R(xi, xj) (see Sacks et al. (1989); Santner et al. (2003);

Rasmussen and Williams (2006) for more details).

The model described by (1) is typically fitted by either maximizing the likelihood or via

Bayesian algorithms like Markov chain Monte Carlo (MCMC). As a result, the predicted

response ŷ(x0) for an arbitrary input x0 can be obtained as a conditional expectation from

the following (n+ 1)-dimensional multivariate normal distribution: y(x0)

Y

 = N

 µ

µ1n

 ,

 σ2
z σ2

zr
′(x0)

σ2
zr(x0) σ2

zRn

 , (2)

where r(x0) = [corr(x1, x0), . . . , corr(xn, x0)]
′. The predicted response ŷ(x0) is the same as

the conditional mean:

E(y(x0)|Y ) = µ+ r(x0)
′R−1n (Y − 1nµ), (3)

and the associate prediction uncertainty estimate (denoted by s2(x0)) can be quantified by
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the conditional variance:

V ar(y(x0)|Y ) = σ2
z(1− r′(x0)R−1n r(x0)). (4)

The most crucial component of such a GP model is the spatial correlation structure, R(, ),

which dictates the ‘smoothness’ of the interpolator that passes through the observations. By

definition, any positive definite correlation structure would suffice, but the most popular

choice is the power-exponential correlation family given by

R(xi, xj) =
d∏

k=1

exp{−θk|xik − xjk|pk}, (5)

where θk and pk controls the wobbliness of the surrogate in the k-th coordinate. A special

case with pk = 2 for all k = 1, 2, ..., d, represents the most popular Gaussian correlation

also known as radial basis kernel in Machine Learning literature. Figure 1 demonstrates the

significance of pk in the smoothness of the mean prediction.

Example 1. Suppose the simulator output is generated by a one-dimensional test func-

tion f(x) = ln(x + 0.1) + sin(5πx), and X = {x1, ..., x7} is a randomly generated training

set as per the space-filling Latin hypercube design (McKay et al., 1979). We use an R li-

brary called GPfit (MacDonald et al., 2015) for fitting the model via maximum likelihood

approach. Figure 1 shows the fitted surrogate along with the true simulator response curves.

Clearly, the choice of pk in (5) plays an important role in determining the smoothness of

the predictor. It can be noticed from Figure 1, that pk = 2 versus pk = 1.95 does not make

visible difference in terms of smoothness. However, it turns out that by changing the power

from pk = 2 to pk = 1.95, the numerical stability of the correlation matrix inversion can be

immensely increased.

Depending upon the parameter estimation approach used (i.e., maximum likelihood

method, empirical Bayesian, or full Bayesian), the prediction uncertainty estimate may vary.

For instance, in empirical Bayesian approach, the parameters µ, σ and θ in Rn are replaced

by their maximum a-posteriori (MAP) estimates. On the other hand, the MLE based ap-

proach, starts by maximizing the likelihood with respect to µ and σ2
z , giving closed form

expressions as

µ̂ = (1′nR
−1
n 1n)−1(1′nR

−1
n Y ), (6)
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Figure 1: The mean predictions obtained using GPfit, when the true simulator response is
generated using f(x) = ln(x+ 0.1) + sin(5πx)

.

and

σ̂2
z =

(Y − 1nµ)′R−1n (Y − 1nµ)

n
, (7)

conditional on the value of θ in Rn. The hyperparameter θ is further estimated by maximizing

the profile likelihood, which is typically an intensive optimization problem. Sacks et al. (1989)

reports the prediction uncertainty estimate as

s2(x0) = σ2
z

(
1− r′(x0)R−1n r(x0) +

(1− 1n
′R−1n r(x0))

2

1n
′R−1n 1n

′

)
, (8)

which accounts for additional uncertainty due to the prediction of unknown constant mean

µ. Of course, the difference between (8) and (4) can be somewhat substantial. See Example 2

for an illustration using a test function based computer simulator.

Example 2. Considering the same setup as in Example 1, Figure 2 shows the fitted

surrogate along with the prediction uncertainty estimates obtained via GPfit and the two

formulations (4) and (8).

From the right panel of Figure 2, it is clear that the third term in the prediction uncer-

tainty estimate (in (8)) is relatively large in the unexplored input regions. As a result, it is

recommended to account for uncertainty quantification due to the estimation of unknown

model parameters.

Several additional theoretical and numerical issues on GP models require more careful

understanding. See Santner et al. (2003); Rasmussen and Williams (2006), and Harshvard-
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Figure 2: The black solid dots are the training data points. Left panel: The blue dashed
curve is the mean prediction obtained using GPfit, the black solid curve is the true simulator
response curve f(x) = ln(x+ 0.1) + sin(5πx), and the shaded area represent the uncertainty
quantification via ŷ(x)± 2s(x). Right panel: The prediction uncertainty obtained via MLE
as in (8) – the posterior variance estimate as in (4)

.

han and Ranjan (2019), for more details on optimization of likelihood, near-singularity of

correlation matrices, choice of correlation kernel, parametrization of hyper-parameters, and

the choice of mean function.

2.2 Dynamic GP Model

Experimentation via dynamic computer simulators arise in various applications, for example,

rainfall-runoff model (Conti et al. (2009)), vehicle suspension system (Bayarri et al. (2007)),

and population growth model for European red mites (Zhang et al. (2018)). The real-life

application presented in this chapter comes from the pharmaceutical industry, where the

investors want to predict the coverage of a particular malaria vaccine called RTS,S/AS01

(Mos-Quirix) around the globe over a 20-year window.

The time-series dependence in the simulator response makes the statistical emulation

substantially more challenging as compared to the standard GP model presented in the

previous section. Recently, a few attempts have been made in this regard. For example,

Conti et al. (2009) constructed dynamic emulators by using a one-step transition function of

state vectors to emulate the computer model movement from one time step to the next. Liu

and West (2009) proposed time varying autoregression (TVAR) models with GP residuals.

7



Farah et al. (2014) extends the TVAR models in Liu and West (2009) by including the

input-dependent dynamic regression term. Another clever approach is to represent the time

series outputs as linear combinations of a fixed set of basis such as singular vectors (Higdon

et al. (2008)) or wavelet basis (Bayarri et al. (2007)) and impose GP models on the linear

coefficients. Zhang et al. (2018) further extended the singular value decomposition (SVD)

based approach for large-scale data. Next, we discuss the basic version of SVD-based GP

model developed by Higdon et al. (2008).

Suppose the computer simulator outputs have been collected at N design points and

stored in the N × q design matrix X = [x1, . . . ,xN ]T , and Y = [y(x1), . . . ,y(xN)] is the

corresponding L×N matrix of time series responses. Then the SVD on Y gives

Y = UDV T ,

where U = [u1, . . . ,uk] is an L × k column-orthogonal matrix, D = diag(d1, . . . , dk) is a

k × k diagonal matrix of singular values sorted in decreasing order, V is an N × k column-

orthogonal matrix of right singular vectors, and k = min{N,L}. Higdon et al. (2008)

suggested modeling the simulator response as

y(x) =

p∑
i=1

ci(x)bi + ε, (9)

where x ∈ Rq, and bi = diui ∈ RL, for i = 1, . . . , p represent the orthogonal basis.

The coefficients ci’s in (9) are assumed to be independent Gaussian processes, i.e., ci ∼

GP(0, σ2
iKi(·, ·;θi)) for i = 1, . . . , p, where Ki’s are correlation functions. We use the pop-

ular anisotropic Gaussian correlation, K(x1,x2;θi) = exp{−
∑q

j=1 θij(x1j − x2j)
2}. The

residual term ε in (9) is assumed to be independent N (0, σ2IL). The number of significant

singular values, p, in (9), is determined empirically by the cumulative percentage criterion

p = min{m : (
∑m

i=1 di)/(
∑k

i=1 di) > γ}, where γ is a threshold of the explained variation.

In this chapter, we discuss the implementation of this so-called svdGP model by Zhang

et al. (2018). R library called DynamicGP (Zhang et al., 2020) provides user-friendly func-

tions for quick usage. The most important function is svdGP, and its usage is illustrated as

follows:

svdGP(design, resp, frac=0.95, nthread=1, clutype="PSOCK", ...)
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where design is the input design matrix, resp is the output response matrix, frac specifies

γ = 95%, and nthread and clutype controls the parallelization of the implementation.

There are a few additional arguments of svdGP() that accounts for other nuances of the

model fitting process.

For all the model parameters in (9), Zhang et al. (2018, 2020) used the maximum a

posteriori (MAP) values as the plug-in estimates. To obtain the MAP estimates of process

and noise variance parameters, σ2
i and σ2, inverse Gamma priors were used, i.e.,

[σ2
i ] ∼ IG

(
αi
2
,
βi
2

)
, i = 1, . . . , p, [σ2] ∼ IG

(
α

2
,
β

2

)
,

and Gamma prior was used for the hyper-parameter 1/θij of the correlation function.

Zhang et al. (2018) show that the approximate predictive distribution for an arbitrary

untried x0 ∈ Rq is obtained by

π(y(x0)|Y ) ≈ π(y(x0)|V ∗, Θ̂, σ̂2) ≈ N
(
Bĉ(x0|V ∗, Θ̂),BΛ(V ∗, Θ̂)BT + σ̂2IL

)
, (10)

where B = [d1u1, . . . , dpup] = U ∗D∗, with U ∗ = [u1, . . . ,up], D
∗ = diag(d1, . . . , dp) and

V ∗ = [v1, . . . ,vp]
T , and Θ̂ = {θ̂1, . . . , θ̂p} and σ̂2 are the MAP estimates of the correlation

parameters and noise variance σ2, respectively. As shown in Zhang et al. (2018),

θ̂i = argmax
θi∈Rq

|Ki|−1/2
(
βi + ψi

2

)−(αi+N)/2

π(θi), and σ̂2 =
1

NL+ α + 2

(
rTr + β

)
,

(11)

where Ki is the N × N correlation matrix on the design matrix X with the (j, l)th entry

being K(xj,xl; θ̂i) for i = 1, . . . , p and j, l = 1, . . . , N , ψi = vTi K
−1
i vi, π(θi) is the prior dis-

tribution of θi and r = vec(Y )−(IN⊗B)vec(V ∗T ) with vec(·) and ⊗ being the vectorization

operator and the Kronecker product for matrices, respectively.

The vector of predictive mean of the coefficients at x0 is

ĉ(x0, |V ∗, Θ̂) = [ĉ1(x0|v1, θ̂1), . . . , ĉp(x0|vp, θ̂p)]T (12)

= [kT1 (x0)K
−1
1 v1, . . . ,k

T
p (x0)K

−1
p vp]

T ,

where ki(x0) = [K(x0,x1; θ̂i), . . . , K(x0,xN ; θ̂i)]
T . The predictive variance Λ(V ∗, Θ̂) of the

coefficients at x0 is a p× p diagonal matrix with the ith diagonal entry being

σ̂2
i (x0|vi, θ̂i) =

(βi + vTi K
−1
i vi)

(
1− kTi (x0)K

−1
i ki(x0)

)
αi +N

. (13)
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Example 3 illustrates the implementation of svdGP model for a test function based

computer simulator model via the R library DynamicGP (Zhang et al., 2020).

Example 3. Suppose the time-series valued response is generated using the following

test function (Forrester et al., 2008) which takes 3-dimensional inputs,

f(x, t) = (x1t− 2)2 sin(x2t− x3), (14)

where x = (x1, x2, x3)
T ∈ [4, 10]× [4, 20]× [1, 7], and t ∈ [1, 2] is on a 200-point equidistant

time-grid. We used svdGP() function in the R library DynamicGP for easy implementation.

Figure 3 illustrates the implementation, by first fitting the svdGP model to a training set

of 20 input points randomly generated via maximin Latin hypercube design in the three-

dimensional hyper-rectangle [4, 10]×[4, 20]×[1, 7], and then predicting the time-series valued

simulator output using svdGP() function.
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Figure 3: Model prediction for six randomly chosen inputs. Each panel shows the true
simulator response (black solid curve), the mean predicted svdGP fit (dashed red curve),
and the uncertainty bounds (blue dotted curves).

From Figure 3, it is clear that the fitted surrogate model predictions are reasonable

approximations of the simulator outputs at the design points. We fitted svdGP model using

the default settings of DynamicGP package. Of course, one can play around with other

arguments to obtain better (more accurate) predictions.

Both, the basic GP models (in Section 2.1) which emulates scalar-valued simulator out-

puts, and the svdGP models (in Section 2.2) used for emulating time-series valued dynamic
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simulator responses, require numerous inversions of n× n correlation matrices - this is com-

putationally intensive and prohibitive if N (the sample size) is large. For instance, in our

motivating application where the training data size is N = 146 (see Section 3), model fitting

via either likelihood method or a Bayesian approach would be computationally burdensome

unless the codes are parallelized on heavy computing clusters. The next section briefly

reviews GP-based models for large data.

2.3 Generalizations for Big Data

Thus far, several techniques have been proposed to account for the large size of the data while

building a GP-based surrogate, see Santner et al. (2003); Harshvardhan and Ranjan (2019)

for quick reference. A naive yet popular approach is to fit several local inexpensive (somewhat

less accurate) models instead of one big (supposedly more precise) model. The method of

searching for local neighborhood can be as simple as finding the k-nearest neighbours (k-

NN) at the point of prediction. For scalar-valued simulators, Emery (2009) built a more

efficient local neighbourhood by sequentially including data that make the kriging variance

decrease more. Gramacy and Apley (2015) improved the prediction accuracy by using a

greedy algorithm and an optimality criterion for finding a non-trivial local neighborhood

set. Zhang et al. (2018) extended this approach further for the svdGP model.

Assuming the total training data size is N , and we wish to predict the simulator response

at x0. Then, the main idea behind this greedy approach in Gramacy and Apley (2015); Zhang

et al. (2018) is to first use k-NN approach for finding n0 neighbours from the training data,

and then sequentially obtain the remaining n − n0 points by using an optimality criterion.

This proposed greedy-sequential method known as lasvdGP (locally approximate svdGP)

is computationally very efficient as compared to the full scalar-GP/svdGP, and much more

accurate than the naive k-NN-based svdGP model (referred to as knnsvdGP).

The following functions in the R library DynamicGP can be used for easy implementation:

knnsvdGP(design,resp, nn=20, ..., nthread = 1, clutype="PSOCK")

lasvdGP(design, resp, n0=10, nn=20, ..., nthread = 1, clutype="PSOCK")

where design, resp, nthread, and clutype are the same as in svdGP(), and the important

additional parameters are nn - the size of the local neighbourhood set (on which the local
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GP models have to be built), and n0 - size of the local neighbourhood set to be found via

k-nearest neighbours which will server as the starting point of the greedy sequential approach

for building the local neighbourhood set.

Example 4. Suppose the simulator response is generated using the same test function

as in Example 3, but the training data is obtained on a N = 500-point random Latin-

hypercube design in the input space: [4, 10] × [4, 20] × [1, 7]. In such a case, fitting a full

svdGP is certainly infeasible on a regular laptop or desktop. Thus, we rely on fitting the

localized surrogate models like knnsvdGP and lasvdGP. Figure 4 shows the surrogate fits

with n0 = 20 and nn = 30 local neighbourhood point sets for lasvdGP model.
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Figure 4: Model prediction for six randomly chosen inputs. Each panel shows the true
simulator response (black solid curve), the mean predicted lasvdGP fit (dashed red curve),
and the uncertainty bounds (blue dotted curves).

From Figure 4, it is clear that the surrogate fits are much better approximations of the

underlying truth (as compared to the illustration in Example 3), which is however expected

as the training size is 500 (much bigger than 20 point design in Example 3). Interestingly,

the error bounds around the predicted mean response are too narrow and sometimes do not

cover the true simulator output. It can perhaps be attributed to the fact that the R library

DynamicGP uses MAP estimators and not the full Bayesian approach. It is often believed

that the latter approach accounts for more uncertainty in the model fitting process.
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3 Application: Malaria Vaccination Coverage

In this section, we use the historical data on worldwide vaccination coverage for several

diseases to predict the coverage ratio of a new Malaria vaccine. The diseased typically

experience fevers, chills and flu like illnesses (Centers for Disease Control, 2019) with the

symptoms varying in their severity on a case-by-case basis. This can be lethal if not treated

properly, and a 2002 study by Greenwood and Mutabingwa (2002) tells us the serious state

of Malaria in the world (see World Health Organisation (2019) for latest detailed report).

Recently, a new Malaria vaccine RTS,S (also known as Mos-Quirix ) has been showing

promising results for human trials in Ghana, Malawi and Kenya. Malaria Vaccine Imple-

mentation Programme (MVIP), coordinated by WHO, is being funded by a global fund

comprising (1) Gavi - The Vaccine Alliance, (2) UNITAID and (3) PATH. As of now, no

results have been made public, and the study is expected to get over by December 2022.

However, in last few months, several pharmaceutical majors have begun showing interest in

the vaccine’s mass production.

Major limitations in the success of a Malaria vaccine are technical and economic feasibility

(Moorthy et al., 2004). With the current human trials underway, the former is largely

solved; however, the latter remains. A study on predicting coverage ratios would immensely

benefit to attract global monies – by corporates and philanthropist funds – to the cause.

Recall that the coverage ratio is defined by the vaccine population count divided by the total

population. Thus, our objective is to predict the coverage ratio for this Malaria vaccine,

using the available data on the coverage ratio of other vaccines. Based on earlier studies on

vaccines, the following variables have been identified as predictors:

• Dosage number (X1): The value is k, if k doses of the vaccine have already been

given. Luman et al. (2005) suggested higher the number of dosages, lower the chance

of completing the entire treatment;

• Dosage time (X2): number of months after birth when the first dosage is taken; 0

represents ‘at birth’. Luman et al. (2005) found vaccines which were given at birth

had higher coverage as there is no extra effort needed to come to health centre;
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• Efficacy (X3): recorded in percentage - ability of the vaccine to actually prevent the

disease (see McLean (1995)). Vaccination doesn’t guarantee prevention, assuming if

chances of prevention are better, more people will be vaccinated;

• Incidence per lac (X4): it is more likely that the parents will give the vaccine to

their children if the occurrence of the disease is high. When incidences are high, the

population is more careful about prevention;

• Communicable (X5): binary (0: non-communicable, 1: communicable) - assuming that

the fear of contagion may drive the vaccination;

• Years active (X6): how long has the vaccine been around for public use (in years).

We used data for several vaccines (e.g., Tuberculosis, Diptheria, Hepatitis B, Polio,

Japanese Encephalities, Measles, NTetanus, Rubella, and yellow fever) collected on afore-

mentioned variables from 78 countries. We pooled the countries using Human Development

Index (HDI) values into 8 groups of size 8, 2 groups of size 7 each. Figure 5 depicts the HDI

value of different countries. In total, the data consists of 146 observations - the coverage

ratio of different vaccines for 10 country groups observed over 38 year period (from 1980 to

2017), i.e., yt(xi), for t = 1, ..., 38 and the corresponding input xi = (xi1, xi2, ..., xi7), where

i = 1, 2, ..., 146 represent the observation number, X1, ..., X6 are predictor variables described

above, and the seventh input (X7) is the average HDI value of the country group.

Figure 5: Human Development Index (HDI) value for different countries considered in this
study around the globe.
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Since the training data size is too big to fit a full svdGP model on a standard laptop,

we implement the localized model (i.e., lasvdGP model) developed by Zhang et al. (2018)

for the model fitting. For a quick illustration, we predict the coverage ratio of the proposed

Malaria vaccine Mos-Quirix for the first dose (X1 = 0) given to a 6-month old child (X2 = 6),

assuming the disease is not communicable (X5 = 0) and the vaccine has been around since

1980 (the study period). We run the model with the average observed value of the incidence

(X4 = 60) and a conservative efficacy (X3 = 70) as compared to other vaccines. We vary the

value of X7 for predicting the coverage ratio of Mos-Quirix at t = 0 and t = 38 for different

country group, see Figure 6 and Figure 7 respectively.

Figure 6: Prediction of coverage ratio for Mos-Quirix at t = 0 for different country groups
using lasvdGP model with nn = 50 and n0 = 30 points.

Figure 7: Prediction of coverage ratio for Mos-Quirix at t = 38 for different country groups
using lasvdGP model with nn = 50 and n0 = 30 points.
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Note that the development of an accurate model for predicting the coverage ratio is be-

yond the scope of this chapter. Our main objective is to illustrate the usage of lasvdGP

model in a complex real-life statistical problem. Although the overall pattern between Fig-

ure 5 and Figures 6, 7 show positive association among HDI value and coverage ratio, more

conclusive remarks require extensive modeling and analysis. One should also look at the

dependence with respect to other predictor variables.

Figure 8 shows the predicted coverage ratio over time - the direct output of lasvdGP

model for different country groups.
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Figure 8: Mean predictions of the Mos-Quirix coverage ratio over time for different country
groups classified based on HDI values.

Clearly, the coverage ratio increases to 100%. This is expected from this model, but an

in-depth analysis is required for more meaningful inference.
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4 Concluding Remarks

In this chapter, we talked about the popular Gaussian process models and its importance

in computer aided experiments for emulating real world phenomena. We discussed various

fundamental concepts that drive Gaussian process models, and the statistical interpretations

and usages. These models, however, suffer from computational instability due to a variety

of reasons, major ones being related to the near-singularity and the cost of inverting corre-

lation matrices. Due to the computational overload, the process is expensive for numerous

evaluations, which are needed for parameter estimation. Under the umbrella of big data, we

present efficient localized GP models for emulating dynamic (time-series valued) computer

simulators.

The concepts and R implementations are illustrated via several test functions. Finally, we

presented an elaborate case-study of how a new Malaria vaccine coverage can be predicted

using the dynamic SVD-based GP model. Of course, this is just an illustration and not

an attempt to accurately solve the case-study. An elaborated second-level modeling and

analysis is required to understand how and why the coverage ratios of Mos-Quirix would

vary for different countries.

One could consider alternative approaches in predicting the coverage ratios. For exam-

ple, clustering techniques to distribute the countries through their holistic characteristics

instead of artificially binning into groups using HDI. One could also simply use a time-series

modelling through AR, MA, ARIMA, etc. to predict coverage ratios.
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Appendix: R Codes

The following R code generates the prediction curves in Figure 1 of Example 1. One can

change the ”power” argument in GP_fit and ”predict” to fit GP model with different power

exponential correlation structures.

#-------------------------------------------

n = 7; d = 1;

computer_simulator <- function(x) {

y <- log(x+0.1)+sin(5*pi*x)

return(y)

}

set.seed(1)

library(lhs)

library(GPfit)

x = maximinLHS(n,d)

y = computer_simulator(x)

xpred = seq(0,1,length=100)

ytrue = computer_simulator(xpred)

GPmodel = GP_fit(x,y, corr = list(type="exponential", power=1.95))

pred=predict(GPmodel,xnew=xpred, corr = list(type="exponential", power=1.95))

yhat = pred$Y_hat

#-------------------------------------------

The following R code generates the prediction curves in Figure 3 of Example 3. ret$pmean[,i]

contains the predicted mean response for the i-th input and ret$ps2[,i] contains the cor-

responding mean square error estimates.

#-------------------------------------------

set.seed(1234568)

library("lhs")

library(DynamicGP)

forretal <- function(x,t,shift=1)

{

par1 <- x[1]*6+4

par2 <- x[2]*16+4

par3 <- x[3]*6+1

21



t <- t+shift

y <- (par1*t-2)^2*sin(par2*t-par3)

}

timepoints <- seq(0,1,len=200)

train <- maximinLHS(20,3)

resp <- apply(train,1,forretal,timepoints)

test <- randomLHS(50,3)

ret <- svdGP(train,resp,test,nstarts=5)

#-------------------------------------------

For generating the predictions in Figure 4 of Example 4, we only need to replace the last

line of the previous code (’ret <- svdGP(...)’) with the following code.

#-------------------------------------------

retl <- lasvdGP(atrain,resp,atrain,nn=30,n0=20,nstarts=5)

#-------------------------------------------

22


	1 Introduction
	2 Evolution of Dynamic GP Model
	2.1 Basic GP Model
	2.2 Dynamic GP Model
	2.3 Generalizations for Big Data

	3 Application: Malaria Vaccination Coverage
	4 Concluding Remarks

