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What is Guaranteed Delivery Advertisement?
Background of Online Advertisement

➔Guaranteed Delivery (GD) Advertising is a strategic 
approach where advertisers secure their desired 
inventory of advertising impressions in advance by 
signing contracts with publishers weeks or months 
ahead of the targeting dates

➔Key features of GD Advertising:
◆ Fixed price for impressions
◆ Defined target audience
◆ Specified target areas
◆ Chosen target channels

➔Advantages of GD over Real-time Bidding
◆ Compared to the dynamic and competitive nature of 

RTB, GD offers a cost-effective solution for brand 
advertisers

◆ GD ensures wide reach to potential consumers with 
guaranteed impressions, providing better control over 
advertising campaigns and budget

Advertising Allocation Strategies
• Guaranteed Delivery (GD)
• Real-time Bidding (RTB)



Background and Contributions
How does Guaranteed Delivery Allocation work, how does our end-to-end model work, 

and what are our contributions?



We visualize End-to-End Prediction and Allocation System
System Architecture for Allocating Ads at Alibaba

➔Our focus is Selling Systems. The goal is to 
establish contracts with advertisers in advance 
by predicting and allocating inventory accurately

➔We sign contracts with advertisers in advance 
while having limited impressions inventory

➔The objectives are to:
◆ Maximize inventory sales
◆ Prevent overselling of inventory

➔Online Serving System ensures
◆ Fulfillment of reserved contracts
◆ Click-Through Rate (CTR) Optimization

The system architecture for Guaranteed Delivery (GD) advertising. 
Our model supports the selling system, when advertisers and the publisher 
sign new GD contracts.



Traditional methods focus on real-time dispatching of traffic to ads
Overview of Traditional Two-stage Systems

Real-Time Bidding (RTB): 
An auction-based system where ad impressions are bought and sold on 
a per-case basis. Advertisers bid for an impression, and if they win, 
their ad is instantly displayed.

● Pros: Dynamic, allows for real-time customization and targeting
● Cons: Uncertain costs, less control over ad placement

Traditional Guaranteed Delivery (GD) Systems: 
Advertisers sign contracts with publishers in advance to secure a fixed 
inventory of ad impressions.

● Pros: Secured impressions, cost control
● Cons: Less flexibility, may lead to underutilization or overselling 

of inventory

Given that high-quality impressions often sell out swiftly in 
large-scale GD marketplaces, even a marginal 
improvement in inventory usage can significantly increase 
publisher revenue and serve more advertisers.

Figure: Bipartite graph of contract allocation problem. 
Supply nodes are impression inventories while demand 
nodes are impression contracts.



Closing the Gap: Two-Stage Systems vs. Our End-to-End Model
What are the limitations and how we bridge it?

Lack of Real-Time Support
• Traditional studies on GD advertising don't provide real-

time predictive allocations required for advance contract 
signing

Overselling Risk
• Theoretical models for online serving risk overselling if 

the signed target impressions exceed the inventory limit

Forecasting Uncertainty
• Two-stage methods assume lower forecasting error 

translates to better allocation quality, which isn't always 
the case

Inefficient Handling of Constraints
• Existing end-to-end learning-based optimization 

frameworks struggle with large numbers of constraints in 
GD selling.

Limitations of Two-Stage Systems
End-to-End Approach
• We propose an end-to-end approach that integrates 

inventory prediction and contract allocation, overcoming 
the limitations of two-stage methods

Efficient Solver with Less Memory
• Our GD selling system includes an efficient differentiable 

Lagrangian solver with less memory cost

Dynamic Feature Extraction
• We use Graph Convolutional Networks (GCNs) to capture 

dynamic features from advertising contracts, enabling 
NLS to fit dynamic optimization objectives and constraints

Improved Performance
• Our approach provides improved allocation error, 

demonstrating its effectiveness in real-world GD selling 
systems

Neural Lagrangian Selling (NLS)



Methodology
Deep-dive into how our End-to-End Allocation optimization model works



End-to-End Model Minimizes Allocation Regret Instead of Prediction Loss

• Predictive model (like NN) to forecast impressions
• Let 𝜃 be the impression inventory of supply nodes; 𝑧

has historical and contextual information
• Predict impressions by minimizing loss

𝐿𝑜𝑠𝑠 = 𝜃 − 𝑔 𝑧;𝑤 "

Stage 1: Impression Inventory

• 𝜃 is supply inventory, 𝑡 represents the elements of 
allocation matrix, 𝑝 are penalty constraints 
(importance of different constraints), 𝑢 are slack 
variables
• max
#,%,&

𝐼 ⊙ 𝜃 '𝑥 − 𝑝'𝑢,

• Subject to constraints:
𝐺𝑥 + 𝐵𝑡 − 𝑢 ≤ ℎ,

𝑢 ≥ 0,
𝑥, 𝑡 ∈ [0,1]

Stage 2: Inventory Allocation

• NLS minimizes allocation regret, not just prediction 
loss

• Learns from historical decision cases, considering 
both inventory prediction and allocation

Our End-to-End Approach

•    
•

Allocation Regret

• Gradient of the regret can be computed by 
differentiating the allocation optimization problem

• Challenge lies in backpropagating optimum ! "#!$%

Gradient of Regret



Architecture of Neural Lagrangian Selling (NLS) Model

GCN module extracts 
important information from 

the allocation bipartite 
graph

Lagrangian module 
implements forward and 
backward propagation of 

inventory optimizer

Prediction module can 
use similar design as 
in two-stage problem

Allocation regret 
instead of prediction 

loss



Lagrangian Dual Optimization

o We formulate dual problem to minimize

o where the Lagrangian function is

o We derive corresponding KKT (Karush-Kuhn-Tucker) 
conditions:

o When 𝑢 > 0, then 𝛽 = 0 and 𝛼 = 𝑝.
o When 𝑢 = 0, the gradient is obtained as:

o We choose hyperparameter 𝜆 = min(𝜃)

o Small 𝜆 results in instability while large 𝜆 introduces 
errors



Efficient Lagrangian Dual Layer
Integrating the Lagrangian Dual Optimization Layer in Deep Neural Networks

Solving the GD Selling Allocation Problem
• We integrate the Lagrangian dual optimization layer into 

predictive deep neural networks, as outlined in Algorithm 1.
• Adam gradient descent method is used in Stage 3, with 
𝑏1, 𝑏2, 𝜇 and 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 as hyperparameters

Advantages of Our Approach
• Flexibility: Our Lagrangian dual layer can be seamlessly 

embedded into any neural network structure.
• Autonomy: Back-propagation can be performed 

automatically by deep learning frameworks like TensorFlow 
or Torch.

• Efficiency: The computation of the optimization layer avoids 
complex operations like matrix inversion, enabling easy 
implementation with batched input and parallel computing for 
enhanced training/inference efficiency.



Graph Convolutional Network (GCN) Extracts Meaningful Features

Ø GCN Module extracts meaningful 
features from the selling allocation 
problem as objective and conditions 
vary greatly between GD contracts

Ø It captures adaptive features for diverse 
decision scenarios and improve 
accuracy and flexibility of allocation 
optimization

Query to 
Supply GCN

• Impressions 
supply is 
converted to 
embedding 
and 
broadcasted 
to all supply 
nodes

Demand to 
Supply GCN

• Aggregated 
supply 
features from 
constraint 
demand 
nodes

Demand GCN

• Aggregate 
demand 
node to 
represent 
competition 
for supply 
impressions

Edge GCN

• Edge 
conditions 
account for 
boundary 
conditions 
like 
frequency 
and crowd

Concatenate 
with ReLU

• All features 
are 
concatenated 
into a single 
layer passed 
to Multi-
layered 
Perceptron



Forward Computation Completes End-to-End Allocation Optimization

Dense Neural Network (DNN) extracts 
important features from input bi-graph, 𝑍′

𝑍′ along with GCN Embeddings are inputs to 
Multi-layered Perceptron (MLP) with ReLU 
activation to estimate supply impressions (𝜃

Estimated supply impressions (𝜃 are input to 
Langrangian dual layer to produce estimated 
allocation ratio "𝑥

Allocation regret is minimized via custom training 
loss function

𝐼 ⊙ (𝜃
!
"𝑥 	− 𝐼 ⊙ 𝜃 !𝑥

"

"
+ 𝜖 𝜃	 − (𝜃 "

"

Training loss has two parts: end-to-end 
allocation regret and prediction error for 
inventory nodes. Hyperparameter 𝜖 balances 
their importances



Evaluation
How does our model perform in comparison to existing methods?



We evaluate our model via two daily datasets
Offline Dataset

• The aim is to test the feasibility of end-to-end optimization theory, comparing the two-stage method 
and end-to-end approach across three inventory allocation cases: full targeting, single targeting, 
and random targeting

• Basic constraints (overselling and underdelivery) are added to the offline inventory allocation cases
• Supply x Demand dimension is 100 x 10 with only 110 constraints (100 overselling and 10 

underdelivery)

Online Dataset
• Experiments are conducted on two online advertising selling datasets: Pre-Video Ads (PVA) and 

Open-Screen Ads (OSA)
• Each supply node of PVA represents a Channel x City x Position combination; for OSA is City x 

App
• The inventory allocation and allocation problems are more dynamic and complex compared to the 

offline datasets
• For m supply nodes and n demand nodes, there are (𝑚×𝑛 +𝑚 + 𝑛) constraints



We compare our end-to-end model with five benchmark models on six metrics

• Compares end-to-end approach with traditional two-stage method

Two-stage Model

• Baseline end-to-end approach using a simple black-box neural 
network

Pure Fully-Connected (PF)

• Removes Lagrangian layer from NLS, uses GCN for prediction

Pure Prediction GCN (PPG)

• End-to-end approach without GCN module

Prediction Network + Lagrangian solver (PL)

• Implements established LP solvers IntOpt and QPTL for 
comparison with Lagrangian layer

GCN+QPTL/GCN+InOpt (End-to-End)

End-to-End Normalized Deviation Error

First-stage Error

Second-stage Error

Publisher Revenue (Avg. Revenue per 
Day)

Delivery Rate (Delivered/Promised)

Usage Rate (Sold/Available Impressions)



NLS outperforms all other models on most benchmarks

Table: Experiment Results on Offline Data

Table: Experiment Results on Online Data

𝑁𝐷!"# and 𝑁𝐷"#$ are Normalized Deviations for prediction and regret.

Our NLS has fewer outliers in comparison with 
two-stage methods.



NLS handles complex optimization constraints better than benchmarks

NLS outperforms classic optimization methods on all benchmarks

NLS has more stable training trajectory NLS has better delivery rate, usage rate and publisher revenue

𝑁𝐷!"# and 𝑁𝐷%&&' are Normalized Deviations for prediction and allocation.
ARPD is Average Revenue per Day.



Conclusion: Key Takeaways and Results

1. Key Idea: Proposes Neural Lagrangian Selling (NLS), an 
end-to-end approach for inventory prediction and contract 
allocation in Guaranteed Delivery (GD) advertising.

2. Methodology: NLS integrates a differentiable Lagrangian 
dual optimization layer into predictive deep neural 
networks, overcoming limitations of traditional two-stage 
methods.

3. Comparison: NLS is compared with established models 
and methods, including Two-Stage, PF, PPG, PL, 
GCN+QPTL, and GCN+InOpt.

4. Results: NLS outperforms existing models in terms of 
allocation regret minimization and computational 
efficiency.

5. Significance: The end-to-end approach offers significant 
improvements in the GD selling process by better 
handling dynamic optimization objectives and constraints.

Figure: Neural Langrangian Selling (NLS) Model for End-to-End Prediction 
and Optimization

Slides, Paper, Poster, and Two-minute summary video 
are available at harsh17.in/kdd2023

https://www.harsh17.in/kdd2023/


Thank you for your time. Questions?
Slides, Paper, Poster, and Two-minute summary video are available at 

harsh17.in/kdd2023

https://www.harsh17.in/kdd2023/

