End-to-End Inventory Prediction and Contract Allocation for Guaranteed Delivery Advertising Wuyang Mao¹, Chuanren Liu²*, Yundu Huang¹, Zhonglin Zu¹, M Harshvardhan², Liang Wang¹, Bo Zheng¹ ¹Alibaba Group, China; ²The University of Tennessee, Knoxville

Background

or months ahead of the targeting dates

prediction and optimization.

29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining | Long Beach, CA | August 5-10, 2023

Results

	Benchmark Models				
-	Two-stage Model				
	 Compares end-to-end approach with traditional two-stage method 				

- Pure Fully-Connected (PF)
- Baseline end-to-end approach using a simple black-box neural network
- Pure Prediction GCN (PPG) • Removes Lagrangian layer from NLS, uses GCN for prediction
- Prediction Network + Lagrangian solver (PL)
- End-to-end approach without GCN module
- GCN+QPTL/GCN+InOpt (End-to-End)
- LP solvers IntOpt and QPTL to compare with Lagrangian layer

NLS outperforms other models on most benchmarks

Methods	full targeting		single targeting		random targeting	
	NDpre	ND _{reg}	NDpre	ND _{reg}	NDpre	ND _{reg}
Two Stage	$0.101_{\pm 0.003}$	$0.023_{\pm 2e-4}$	$0.101_{\pm 0.003}$	$0.125_{\pm 0.005}$	$0.101_{\pm 0.003}$	$0.045_{\pm 0.002}$
PF	$0.130_{\pm 0.010}$	$0.045_{\pm 0.005}$	$0.115_{\pm 0.008}$	$0.132_{\pm 0.010}$	$0.121_{\pm 0.010}$	$0.076_{\pm 0.007}$
PPG	$0.125_{\pm 0.010}$	$0.015_{\pm 1e-4}$	$0.127_{\pm 0.007}$	$0.112_{\pm 0.001}$	$0.135_{\pm 0.011}$	$0.036_{\pm 0.001}$
PL	$0.102_{\pm 0.001}$	$0.008_{\pm 1e-4}$	$0.103_{\pm 0.001}$	$0.113_{\pm 0.003}$	$0.101_{\pm 0.002}$	$0.047_{\pm 2e-4}$
NLS	$0.096_{\pm 0.002}$	$0.007_{\pm 2e-4}$	$0.097_{\pm 0.001}$	$0.098_{\pm 0.001}$	$\boldsymbol{0.095}_{\pm 0.001}$	$0.029_{\pm 1e-4}$

Methods	PVA		OSA	
	NDpre	ND _{reg}	NDpre	ND _{reg}
Two Stage	$0.069_{\pm 0.002}$	$0.068_{\pm 0.004}$	$0.067_{\pm 0.002}$	$0.132_{\pm 0.005}$
PF	$0.083_{\pm 0.015}$	$0.095_{\pm 0.020}$	$0.075_{\pm 0.015}$	$0.128_{\pm 0.021}$
PPG	$0.085_{\pm 0.005}$	$0.054_{\pm 0.002}$	$0.078_{\pm 0.003}$	$0.086_{\pm 0.004}$
PL	$0.065_{\pm 0.002}$	$0.061_{\pm 0.002}$	$\boldsymbol{0.065}_{\pm 0.001}$	$0.136_{\pm 0.004}$
NLS	$0.064_{\pm 0.003}$	$0.041_{\pm 0.001}$	$0.068_{\pm 0.003}$	$0.058_{\pm 0.001}$

NLS has fewer outliers in comparison with two-stage methods

NLS has better delivery rate, usage rate and publisher revenue

Evaluation Metrics

Experiment results on **Offline data**

Experiment results on **Online data**

