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Most clustering algorithms work for numerical variables where the variables are as-

sumed to be continuous and random. In this short monograph, I propose a probability-

based distance measure for computing dissimilarity between observations for discrete vari-

ables thought to be randomly distributed. As their probabilities are derived empirically,

there is no underlying assumption on their distribution.

1 Background

Clustering is the task of grouping a set of observations together such that observations

that are similar to one another belong to one group. Although its primary purpose is

in grouping observations for exploratory data analysis, the method is currently used in

many fields. The rise of machine learning has accentuated its popularity.

With only numerical data at hand, the problem is relatively simple. We choose a

distance measure and keep observations “close” to one another, maximising the distance

between the cluster centres. However, the distance methods with categorical data are not

obvious.

Various researchers have studied the problem in detail. Gower’s distance is a popular

measure that can calculate the dissimilarity between logical, numerical, categorical, and

even textual data [2]. The original paper by Gower [1] is lucid enough for readers to

understand.

I propose a joint probability-based measure of dissimilarity between observations based

on the joint probability of two discrete variables. The underlying assumption is that the

discrete variables are independent of each other.
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A generative model in statistics that assumes the observations were sampled from a

natural population with a joint probability defined by P (X, Y ), where X is the observable

variable, and Y is the target variable. This contrasts with a discriminative model of the

conditional probability that assumes that the target Y was produced given an observation

X = x, i.e. determined by P (Y |X = x).

Clustering with unknown targets is a generative process rather than a discriminative

process. Consider a natural generative process that creates a set of observations X. We

do not know in advance which Y does an observation belong. Since this is mainly non-

experimental data, we are trying to find which observations are likely similar.

2 Method

Consider two discrete random variables X1 with u different classes and X2 with v dif-

ferent classes. Let {c11, c12, . . . , c1u} be the set of different classes of X1. Similarly, let

{c21, c22, . . . , c2v} be the set of different classes of X2. The empirical probability of event

X1 = ci is m
n

, where m is the frequency of ci observed in X1 and n is the total number of

observations.

Assuming that the sample is representative of the population, we can calculate the

empirical probability of each class for each variable. Once we have those probabilities, we

can calculate the joint probability for an observation that I call “score”. This score is a

number between 0 and 1.

Interpretation The score of zero is asymptotically possible but impossible in real-world

analysis. If the researcher assumes no prior knowledge about the variable, only the existing

classes observed in the data can be used as a possible class. In that case, the score cannot

be zero for any observation. However, if the researcher assigns a non-zero probability to

a class that wasn’t observed in real data, we can have zero probability for some classes.

A score of one is possible only when all observations are precisely the same.

In most general cases, the value for each observation would lie between zero and one.

The closer the values are to each other, the closer they are to each other (although this

is not guaranteed, as we will see in the following example.)

Pros and Cons

The proposed method is amazing if we do not assume any prior probabilistic distribution

for the variables. Since it relies on empirical distribution, it estimates the class probability

for a discrete variable only based on available observations. However, this benefit comes
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Sl No Sex City Colour Executive Score

1 Male Shanghai Blue Yes 12/625 = 0.0192
2 Female New York Blue No 24/625 = 0.0384
3 Female New Delhi Black Yes 9/625 = 0.0144
4 Male New York White Yes 12/625 = 0.0192
5 Female Boston Red No 6/625 = 0.0096

Tab. 1: This dummy data was created for the example. As you can observe, different
variables have different probabilistic distributions.

at a (potential) cost. A biased sample will significantly affect the empirical probability

and thus the score. It may not be reliable in such cases.

It is also possible that this method will lead to combinatorial explosion and thus very

small values of the score. When calculating the empirical probabilities, we will typically

have small values — less than 0.3 if there are three classes, say. If there are five such

variables, the “average” score would be 0.35 = 0.00243, which is very small.

This limitation has an easy fix. We could easily scale the score by multiplying it by

a large C to bring it on the same scale as the rest of the variables. This will ensure that

the clustering algorithm doesn’t penalise this variable for a small default value.

3 Example

Let me illustrate the method with a small example. Consider the following data with

three discrete variables and no continuous variable (Table 1).

The variables have different probability distributions. The probability of being a Male

is 2/5; being a Female is 3/5. The probability of the City being New York is 2/5; Shanghai,

Boston or New Delhi are all equal to 1/5 each. The probability of the favourite colour

being Blue is 2/5; Black, White or Red are at 1/3. Finally, being an executive is 3/5, and

the probability of being a non-executive is 2/5.

Assuming that all variables are independent of each other, the probability that a person

is Male who lives in Shanghai, whose favourite colour of Blue and who is an executive

is 2/5 ∗ 1/5 ∗ 2/5 ∗ 3/5 = 12/625 = 0.0192. I call this joint probability an observation’s

score. We could repeat the exercise for all the observations, and we will obtain the results

presented in the last column of Table 1.

This continuous measure that I call “Score” can measure dissimilarity between obser-

vations. Note that the method doesn’t guarantee a differentiable score. Even observations

with which we get precisely the same can differ from one another. However, observations

with very different scores would inevitably be different observations. The latter property

is more critical when deciding which cluster an observation belongs to.
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4 Simulations

In this section, I will compare the clusters found using three methods: (1) using only

continuous variables, (2) using continuous variables and the score, and (3) using Gower’s

distance. For the purpose of this simulation, I will use flower data available in cluster

package in R. 1 It is a small dataset with 18 observations, six discrete variables and two

continuous variables. A quick overview of the dataset is provided in Table 2.

Vari-
able

Description Type # of Unique
Values

V1 Indicates whether the plant may be left in the garden
when it freezes.

Binary 2

V2 Shows whether the plant needs to stand in the
shadow.

Binary 2

V3 Distinguishes between plants with tubers and plants
that grow in any other way.

Binary 2

V4 Specifies the flower’s color (1 = white, 2 = yellow, 3
= pink, 4 = red, 5 = blue).

Dis-
crete

5

V5 Indicates whether the plant grows in dry (1), normal
(2), or wet (3) soil.

Dis-
crete

3

V6 Gives someone’s preference ranking going from 1 to
18.

Dis-
crete

18

V7 The plant’s height in centimeters. Con-
tinuous

—

V8 The distance in centimetres that should be left
between the plants.

Con-
tinuous

—

Tab. 2: Summary of the dataset flower. We have 18 observations in total and eight
variables. Six variables are discrete or binary (i.e. categorical) and two are con-
tinuous.

Results and Discussion

The clusters obtained from the continuous variables seem to have accounted only for V7

in differentiating between the observations. See Figure 1 for a scatter plot. The clusters

obtained with the continuous variable and the score are presented in Figure 2. All the

points in cluster 1 are identified as the same. However, points in cluster 2 in the second

method include points that were represented by cluster 3 in the first method.

1 For more details, see https://cran.r-project.org/web/packages/cluster/cluster.pdf. This
dataset was first published by Struyf, Hubert and Rousseeuw (1996).
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Fig. 1: Clusters obtained with only continuous variables: V7 and V8.

Fig. 2: Clusters obtained with only continuous variables: V7 and V8.

Fig. 3: Clusters obtained with all variables. Distance was calculated using Gower’s dis-
tance metric.
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5 Concluding Remarks

In this short monograph, I presented a new distance metric based on empirical joint

probability. With a small simulation on flower data, I showed how effective it is as

compared to not using categorical variables at all. I also compared the results with

Gower’s distance-based clustering. I found that the results from the three methods do not

match exactly. However, my method shows some improvement over not using categorical

variables.
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